
Elements of IT Project Management

Script accompanying my lecture

University of Applied Sciences
Frankfurt am Main

June 2015

Dr. Erwin Hoffmann

2

Version history:

• First Version:
The first version was created upon my first lecture about IT Project
Management in 2008. It included most of the material available today
and referenced the “inclined tower of Cologne” as sample of bad Project
Management. The layout was realized by means of Ami Pro under
Windows 2000.
• Second Version:

This version results on my 2nd lecture about IT PM in 2009 improved
on Project Management regarding the German DIN standards. Due to
current events, I extended the problems with bad Project Management
with the collapse of the historical municipal museum in Cologne. This
script was realized with OpenOffice under MacOS X.
• Third Version:

Here, additional ’Agile Project Management’ is included. Unfortu-
nately, I had to extend the chapter about bad Project Management
in Cologne even further (2010). If anybody believes, Project Manage-
ment is not necessary, the showcase is open. The script was completely
revised, ported to TeX and realized with Texmaker under Ubuntu and
fully hyperlinked.
• Forth Version:

Included chapters about Scrum, 6σ, User Centered Design, and Con-
tinuous Integration, extended the Quality section and re-organized the
script. Epigraphs for the ’part’ pages give me headache. Using now
TeX on MacOS X.

Contents

I Introduction 9

1 What is Project Management? 11
1.1 Scope of the course . 11
1.2 Historical Projects . 11

1.2.1 Building the Cheops Pyramid 11
1.2.2 Building the Cathedral of Cologne 13

1.3 What is a Project? . 13
1.3.1 What is Management? 15
1.3.2 Why Project Management? 16
1.3.3 What are failed Projects? 16
1.3.4 Project Commitments and De-commitments 17

2 What is IT Project Management ? 21
2.1 Tasks and responsibilities of a Project Manager 23
2.2 What are Stakeholders ? . 24
2.3 Project phases . 25

2.3.1 Project versus Product 25
2.4 Project Management: Compliance and Conformance 26

2.4.1 Project Management Institute (PMI) 26
2.4.2 PRINCE2 . 26
2.4.3 ISO 10006 / DIN 69 90x 27
2.4.4 SCRUM . 27
2.4.5 SEI . 27
2.4.6 ISO/IEC 12207 . 28
2.4.7 ISO/IEC 15504 (Spice) 28

II Pre-Conditions for Project Management 31

3 External and Internal Pre-Conditions 33
3.1 Business Plan . 33

3.1.1 Technical Evaluation and Market Analysis 34
3.1.2 Return-On-Investment Calculations 35

3

4 CONTENTS

3.1.3 The Mission Statement 36
3.2 Project Management in Conflict 36

3.2.1 Balancing Budget, Deadline, and Quality 37
3.2.2 Effectiveness versus Efficiency 38

3.3 Project Conditions . 38
3.3.1 Existing Technical Framework 39
3.3.2 Existing Project Organization 41
3.3.3 PLs Competence’s . 42

3.4 Project Initialization Summary 44

III Team Management 47

4 The Project Manager and his Team 49
4.1 Setting Up Teams . 50

4.1.1 Organization of Project Management 50
4.1.2 The Project Manager 50
4.1.3 Leadership models . 51
4.1.4 Declaring PM methods 53
4.1.5 Building a team . 53
4.1.6 Delegation . 55
4.1.7 Skills and People CMM levels 55

4.2 Organizing Teams . 57
4.2.1 Project Office . 57
4.2.2 RACI Matrix . 57
4.2.3 Meetings . 58
4.2.4 Document Filing . 59

4.3 Running Teams . 59
4.3.1 Conflicts . 59
4.3.2 Workshops . 61
4.3.3 Mediation . 61
4.3.4 Coaching . 61

4.4 Controlling . 61
4.4.1 Confirmations . 61
4.4.2 Auditing . 61
4.4.3 Reporting to Management 62

IV Project Planning and Scheduling 65

5 Scope and Tools of Project Planning 67
5.1 Start of a new Project – the Project Plan 67
5.2 Identifying Project Dependencies and Tasks 69
5.3 The Work Breakdown Approach 70

CONTENTS 5

5.4 Project Organization Structure 71
5.5 Scheduling: Assigning Deadlines and Resources to Tasks . . . 72

5.5.1 Gantt Charts . 73
5.5.2 Lists . 75
5.5.3 Netplan Techniques 75
5.5.4 Critical Path Analysis (CPA) 75

5.6 IT Project’s Phases . 76
5.6.1 Software Development Lifecycle Model 77
5.6.2 Spiral Model . 79

5.7 Background, Exercises, Facts 82

V Standards and Frameworks 83

6 DIN Norm 69 000 for Project Management 85
6.1 Scope of DIN 69 000 . 85
6.2 Project Management according to DIN 69 901 86
6.3 Operating a Project (DIN 69 905) 87
6.4 Budgeting Projects and Controlling Costs 88
6.5 Project Management Systems 89
6.6 Netplan Techniques . 90
6.7 Project Controlling . 91

7 PRINCE2 – Projects in Controlled Environments 93
7.1 Origin and Scope of PRINCE2 93
7.2 The PRINCE2 Management Components 95

7.2.1 Organisation . 96
7.2.2 Plans . 97
7.2.3 Controls . 99
7.2.4 Stages . 99
7.2.5 Management of Risk 100
7.2.6 Quality in a Project Environment 101
7.2.7 Configuration Management 102
7.2.8 Change Control . 103

7.3 PRINCE2 Processes . 104
7.3.1 Process Model . 104
7.3.2 Starting up a Project (SU) 104
7.3.3 Initiating a Project (IP) 106
7.3.4 Directing a Project (DP) 106
7.3.5 Controlling a Stage (CS) 108
7.3.6 Managing Product Delivery (MP) 108
7.3.7 Managing Stage Boundaries (SB) 109
7.3.8 Closing a Project (CP) 110
7.3.9 Planning (PL) . 110

6 CONTENTS

7.4 PRINCE2 – 2009 . 112

8 Project Management Body of Knowledge 113
8.1 Project Management Knowledge Realms 113
8.2 Project and Product Life Cycle 116
8.3 Project Management Processes and Process Groups 117

8.3.1 Initialisation . 118
8.3.2 Planning . 118
8.3.3 Project Execution . 120
8.3.4 Control+Steering . 120
8.3.5 Termination . 121

8.4 Project Management Disciplines: The know-how Groups . . . 122
8.4.1 Integration Management 122
8.4.2 Scope Management . 124
8.4.3 Time Management . 125
8.4.4 Cost Management . 126
8.4.5 Quality Management 128
8.4.6 Human Resource Management 129
8.4.7 Communication Management 131
8.4.8 Risk Management . 132
8.4.9 Procurement Management 133

9 Agility in Project Management 137
9.1 Extreme Programming . 137
9.2 Feature Driven Development 137
9.3 Dynamic Systems Development Method 138
9.4 The Agile Manifesto . 138
9.5 Scrum . 140

9.5.1 Scrum Rôles . 140
9.5.2 Product Backlog . 141
9.5.3 Scrum Artefacts . 142
9.5.4 Scrum versus legacy Project Management 142

9.6 The Sprint Process . 143
9.6.1 Sprint Planning . 144
9.6.2 The Sprint Backlog . 144
9.6.3 Daily Scrum . 144
9.6.4 Product Increment . 145
9.6.5 Sprint Review . 146
9.6.6 Measuring the Sprint Progress 146
9.6.7 Sprint Retrospective 147

10 Process Control with Six Sigma 149
10.1 Fishbone Diagrams . 150
10.2 FMEA . 150

CONTENTS 7

VI IT Product Development Management 153

11 Software Development and Life Cycle Models 155
11.1 The SW Production Chain . 155
11.2 The Waterfall Model . 156
11.3 Use-Cases and Test-Cases . 157
11.4 The V-Model . 160
11.5 The V-Model XT . 161
11.6 The Spiral Model . 163
11.7 GQM . 165
11.8 The RUP Model . 166
11.9 User Centered Design: UCD 168

11.9.1 Usability Requirements for the User Centered Design . 169
11.9.2 Realizing User Centered Design 169

11.10Software Metrics . 170
11.11Software Modelling and CASE Tools 172

12 Software Quality and Defect Management 177
12.1 The Software test cycle . 178

12.1.1 PMBoK: Software development, tests, and integration 180
12.1.2 Scrum: Software development, tests, and Integration . 180

12.2 Quality Standards and Requirements 181
12.2.1 FURPS Criterion’s . 182

12.3 SW Quality Management according to ISO 9000 182
12.4 Quality standards according to ISO/IEC 9126 185

12.4.1 Quality as a Process chain – ISO/IEC 9126-1 185
12.5 Software product Quality Requirements and Evaluation – SQuaRE185
12.6 Defect Management . 187

12.6.1 Attributes of a Defect 187
12.6.2 Defect Lifecycle . 189

12.7 QA reports . 191
12.8 Estimating remaining Defects 192

13 Continuous Integration 199
13.1 Why (Continuous) Integration ? 199
13.2 Development and testing Environments 200

13.2.1 Infrastructure for the Continuous Integration 201
13.3 Requirements for the Team applying Continuous Integration . 201
13.4 The Build Process . 203

13.4.1 Building for Continuous Integration 204
13.4.2 Fixing errors within Continuous Integration 205

13.5 Continuous Delivery . 205

8 CONTENTS

14 Release and Roll-out Management 207
14.1 Release Management à la ITIL 208
14.2 Release Management Overview 210
14.3 Release Planning . 212
14.4 Code and Patch Management 214
14.5 Quality Assurance . 215
14.6 Release Readiness . 217
14.7 The Roll-Out Process . 218

15 Summary 219
15.1 The Project Management Timeline 219
15.2 Linking Project Management with SW Product Development 220
15.3 Open Issues . 221

16 Project Artifacts 223
16.1 Project Initiating Statements 223

17 PMBok English/German Glossary 225

Building the Pyramids took a
lot more planning than Linux.

Linus Torvalds (2012)

Part I

Introduction

9

Chapter 1

What is Project Management?

1.1 Scope of the course

This course summarises my experience of now almost 10 years in Project
Management (PM) and provides an outline of today’s established methods
and standards used to manage IT projects successfully. While in particular
two distinct frameworks for Project Management exist (PMI and PRINCE2),
I rather will focus on practical issues which are in particular specific for IT
projects.

The course is organized in five parts:

• Part one shall provide an overview of IT-PM.
• Part two deals with the fact, that IT projects are typically set up in an

existing landscape and PM has to consider this heritage which can be
beneficially but occasionally might be a heavy burden a new project.

• Part three considers Team Management as probably the most import
factor for a project success or failure.

• Part four lays out some principal ideas of project planning.
• Part five provides an overview of general Project Management methods

and existing frameworks.
• Part five, finally, is dedicated to the specifics of IT projects, deal-

ing in particular with Software development while including Software
Modelling, Quality and Defect Management as well as Integration and
Release Management.

1.2 Historical Projects

1.2.1 Building the Cheops Pyramid

By today’s knowledge, the Cheops pyramid at Gizeh (one of the SevenWorld-
wonder) has been started to get build 2467 BC (according to stellar constel-
lations). It should serve as tomb for the pharaoh Cufu, which gave order to

11

12 1.2 Historical Projects

Figure 1.1: a) The Cheops Pyramid in Gizeh; b) Achet Chufu = Horizon of
Chufu (Cheops) [49]

build the ’big pyramid’ shortly after his father Snofru died [1.1(a),1.1(b)].
It is believed, that the building was completed 30 years after this order was
received, and it is estimated that about 10 years were used to establish the
(absolute plain) platform and 20 years were enough to complete the whole
building. Not only that the tiptop is missing today (10 m) but in addition
the big pyramid was originally equipped with additional tura lime stones
painted snow white and stood as tallest member among the Chephren and
the Mykernios pyramid in the valley of Gizeh.

During those 30 years, not only the architecture of the pyramid had to
be designed, but in addition the necessary material and the labour force had
to be organized and sustained over this period. 2,5 million limestones had to
be broken downside the Nile and transported (by ship) to the building place,
each of them had a weight of 2.5 tons (in average) to be finally lifted up to
an altitude of 150 m. Probably, even with today technologies, we would no
be able to complete such a building (in the required quality standard) in
that time. Without an almost perfect Project Management, this task would
be never achievable.

We have to consider that not only all the material had to be transported
here, but also special tools and wooden and perhaps copper lever arms needed
to be constructed. Several thousand partially high skilled people had to be

1.2.2 Building the Cathedral of Cologne 13

Figure 1.2: Cathedral of Cologne before (left) and after (right) finishing the
South Tower [53]

fed; they needed hosting as well. Since those felachs typically were needed
for farming, additional care had to be taken that they are substituted and
that the overall economy is still working.

1.2.2 Building the Cathedral of Cologne

The Cathedral of Cologne was planned to be build in the year 1248 in order to
serve as tomb for the remnants (reliques) of the ’Holy Three Kings’ (visiting
the Jesus boy child shortly after his birth). The trachyt stones are gathered
from the nearby ’Siebengebirge’ down the river Rhine and shipped to the
building place. The first part of the 146 m tall building was finished in 1322.

However, constructing the South Tower was not completed until 1880
while using the original plans (figure [1.2]).

Due to environmental influences, the trachyt stones age significantly and
the Cathedral needs permanent repair and fixing. Building of the Cathe-
dral of Cologne will probably never stop in order to keep this building as
’UNESCO world heritage’. A common phrase of the citizens of Cologne is:
"Once the Cathedral is finished, the world is at it’s end." I am not talking
about Project Management here; guess why.

1.3 What is a Project?

Probably the first modern (and actually written down) definition for a ’project’
originates from R.L. Martino [26]:

"A project is any task which has a definable beginning and de-
finable end and requires the expenditure of one or more resources
in each of the separate but interrelated and interdependent ac-
tivities which must be completed to achieve the objectives for
which the task was instituted."

14 1.3 What is a Project?

In Germany , the ’Deutsche Industrie Norm’ DIN 69 901 provides inDIN 69 901
addition a precise definition of the term ’project’ [4]:

"A project is task defined by the uniqueness of it’s all-over
realization conditions, in particular a
(1) defined aim or goal,
(2) defined conditions regarding time-frame of realization, finan-
cial, personal, and other conditions,
(3) is distinct against other tasks, and
(4) provides a project-specific organization."

Generally speaking, within a given organization (whether a company,
GO1, or even among your family, colleagues and friends) a ’project’ is un-
derstood as the opposite of ’general operation’, thus it is something special
and requires particular attention and funding. In our today’s understanding,
a ’project’ neither requires a certain complexity, nor is a ’project’ charac-
terized by virtue of its ’technical’ character. As introduced, even building a
family house or buying a family home might be a project.

On the other side, our common notion of a project would include the
attributes ’challenging’ and ’complex’. According to [24] a project can be
characterized as:

• Limited task with defined start and end (goal)
• New horizons: Touching the limits of current technologies
• Risky in terms of technology, economical impact, and time-frame
• Complexity:

– Lots of participants of different disciplines; perhaps third party
organizations

– Interdependencies not standardized; organizational structure not
(yet) established

• Moving organizational requirements during the project phases
• Substantial impact for the company or organization
• Time to market dependencies

Figure [1.3] lists (on a time scale) some ’modern’ projects where Project
Management methods were used. Of course, the complementing picture
(’how many project failed though PM was tried’) is much more difficult to
achieve. In addition, the quality of the solution achieved has to be ques-
tioned. However, this is outside the scope of Project Management and in
practice a hot discussed political issue.

1Government Organizations

1.3.1 What is Management? 15

Figure 1.3: Projects managed with Project Management support [24]

1.3.1 What is Management?

Let’s try to define what management is:

"Management includes all necessary tasks to plan, organize Management
and supervise the current activities based on explicitly expressed
methods, thus the project is eventually completed within time
and budget and the product (the result of the project) can be
achieved with determinable functionality and quality."

As a result, (project) management has to balance the goals and the effort
which we will later will call the ’magical triangle of project management’.

Here, we have mentioned the management elements

• planning,
• leading, and
• controlling.

During the project’s progress these importance of those elements will
undergo substantial changes. While in the begin of a project, clearly the
planning of the product and the project has preference, during the opera-
tional phase leading and controlling deserves most attention.

Often, the latter tasks are split among different people or even orga-
nizational units. As we know from many projects, this view is inherently
incomplete. In particular large projects need governance:

Governance subsumes the infrastructural and organizational means to Governance
provide during the lifetime of the project the required framework to ensure

• dedicated technical competence,
• operational responsibility, and
• overall risk management.

16 1.3 What is a Project?

Figure 1.4: Framework for Project Governance setup

Thus governance is mostly situated outside the project: it serves as an
umbrella. However, governance is a joint relation between the responsible
project’s stakeholder, the operative management, and the project controlling
to commonly share the estimate-able and none-estimate-able (residual) risk
of the project and provide a framework for effective risk management (figure
[1.4]).

1.3.2 Why Project Management?

There is a general understanding, that complex tasks needs some special
organization in order to succeed and meet the project goals. The driving
factors for a dedicated PM are:

• Reduced ’time to market’ for new products.
• Estimate the amount of resources (budget, people, and other condi-

tions) needed.
• Control the project in every phase and allow a reasonable risk man-

agement.

Project Management can be characterized as target disc. Main task is
to meet the project goals, while the surrounding ’rings’ may serve to hit
this target; though badly organized can lead to substantial deviation (figure
[1.5]).

1.3.3 What are failed Projects?

Typically, projects fail if more than one out of the following conditions areFailures
met:

• The project runs out of scope
The original aim of the project can not be reached. This happens, if
no realistic business plan was established,
• The project runs out of business

The market conditions have been changed substantially during the run-
ning project, thus it became more or less obsolete.

1.3.4 Project Commitments and De-commitments 17

Figure 1.5: Elements of Project Management [24]

• The project runs out of time
This may happen, if the complexity of the project was underestimated,
or the funding was insufficient, or people "dilute" from the project.

• The project runs out of budget
Sadly to say, that most of the projects have to suffer from that fate.
One of the last prominent projects to mention is the German lorry maut
system finally realized by Daimler-Chrysler2 and T-Systems (called the
T-Collect consortium), though it was a successful project regarding all
other issues.

By experience, not all projects can be successfully completed. For in-
stance, it was common practice of Microsoft (and naming a German com-
pany: Softlab) to set-up up different project teams for the same project
running in competition. One goal for a project might also be to build strong
teams, capable to successfully work on the next project. However, under to-
day’s economical pressure, this policy becomes more and more uncommon.
By the very same token, quite often projects are announced ’successfully
completed’ and ’ready for operation’ if in reality the system is only par-
tially working and does not meet the predicted (essential and/or important)
project goals.

1.3.4 Project Commitments and De-commitments

In order to partially complete a project successfully (in time and in budget)
it might be necessary to reduce the original stated aims such they fit into

2No Chrysler anymore!

18 1.3 What is a Project?

the current situation of the project. This situation may become apparent at
virtually any phase of the project.

In case the project depends on a third party delivery, the supplier has
to actually de-commit parts of the announced functionalities. Of course,
this requires to change the original project plans in order to re-evaluate the
dependencies and estimate the consequences for the whole project. In case
of a substantial impact, a common procedure is to have already considered
alternative solutions (plan ’B’), i.e. having a different potential supplier in
’stand-by’ mode.

It is important to be able to distinguish betweenCriterion’s

• ’essential’ (absolutely necessary),
• ’important’ (but substitutable) and
• ’nice to have’ (can be left out)

features of the project.
For all important and in particular essential goals of the project initially,

a so-called ’critical path analysis’ has to be carried out as part of the risk
management.

1.3.4 Project Commitments and De-commitments 19

Background, Exercises, Facts

A known disaster of Project Management: The Cologne Subway Drilling

While I prepared this lecture and was referencing the building of the
Cathedral of Cologne I (and many others witness with me) a complete failure
of Project Management.

In Cologne a new underground line is going to get build, touching the Disaster #1
Cathedral closely and needs extensive drilling. In 2007, due to the same con-
struction, the tower of the St.-Johann-Baptist church was heavily impacted
[1.6] and needed some ’resurrection’.

At the same time, it became clear that some static calculations about
Cologne’s subterranean structure and capabilities is obviously odd and need
re-calculation. However, the incident was considered ’single cause’ only and
consequences were neglected.

Figure 1.6: St.-Johann-Bapist Church victim of today’s (none existing)
Project Management [Der BauUnternehmer]

One year later, in Spring 2008 and less then 1 kilometer further south Disaster #2
(location ’Waidmarkt’) the Cologne’s historical Archive collapsed out the
the nothing [1.7] Later it was identified, that the companies in charge of
the civil construction pumped much to much ground water into the river
Rhine. Thus the underground – consisting of sand and banked up by the
river over thousands of years – simply ’diluted’ while filling up those areas
where the ground water has been sucked away from. It was identified hat
to many ground water pumps had been used, far above what was originally
allowed. Sadly two people died (fortunately only) the costs of the projects
raised from 600 mio Euro to 1.2 billion Euro. The estimated losses for the
historical building can only be estimated to be at least some further 500 mio
Euro.

Again one year later (during the carnival season 2009) it became obvious, Disaster #3
that roughly about 85 % of the supporting metal frames were stolen by some
workers at the construction site [1.8]; in particular obvious at the ’Alter

20 1.3 What is a Project?

Figure 1.7: Collapse of Cologne’s Municipal Archive building in March 2009
due to civil construction (drilling) for the new subway line [32]

Markt’, one of the most important spots for the carnival rally.

Figure 1.8: Civil construction site at the ’Heumarkt’ where 85 % of the
supporting metal frames where stolen by local workers [36]

According to the news agency WDR [36]:

KVB [the local public transport company] lawyer Gero Walter de-
clared (08.03.10) that the civil construction controls at the site ’Waid-
markt’ did not work. Though he emphasized that the cause of the
collapse of the Municipal Archive Museum has not been determined
yet. Prior of the collapse the workers did essentially control them-
selves. An independent engineer simply checked the static calculations
and protocols available to him. However, he never visited any construc-
tion site, which was common otherwise. After the collapse, happening
on March 3rd 2009 , the regional government at the capital Düsseldorf
detracted the responsibility for the construction controlling from the
KVB. Since then (!) the local constructions are additionally supervised
by an external consulting company.

Chapter 2

What is IT Project
Management ?

IT Project Management is part of the general PM, however due to the nature
of the delivered product the software special tools and frameworks can be
used to guide, manage, and measure the quality of the product and finally
to deliver the product in a well-suited form ready to use in an easy way.

IT Project Management is a part of the general PM and has per se neither
less nor more management requirements as any other project; though of
course specific. However, in the IT industry and business it is often believed,
that IT project management can be facilitated with IT means and tools only.
This is a substantial mistake which yields finally to the failure of the project.
In particular, there are some substantial "don’ts" in IT PM:

The big "don’ts"• General Management by Powerpoint (or equivalent)
this is a bad habit, and often staff and project members are fed reading
those slides.
It is believed, that the fate of the Space Shuttle ’Columbia’ and the
death of all astronauts, evaporating in the earth’ atmosphere, due to
fallen-off heat-tiles during the space craft’s lift-off are due to an miss-
interpreted Power Point slide [14].

• Document Management by Word (or equivalent)
any complex document structure to be consistently maintained needs
a special system; systems based on binary representation simply don’t
work.

• Project Management by Outlook (or equivalent)
neither communication nor deadline management should use exten-
sively email communication; email by construction is unreliable.

• Problem/Incident/Defect Management by Excel (or equivalent)
these tools are good for reporting numbers, but incapable to allow a
content-driven analysis.

21

22 CHAPTER 2. WHAT IS IT PROJECT MANAGEMENT ?

IT Project Management consists verbally of three different terms in re-
verse order: Management, Project, and IT.

Management is part of the human society and culture. Actually evenCivilization
animals manage their inter-relations and their common search for nutrition.
Ants, bees, dolphins, zebras, all these species are highly organized and partly
well managed. Management results as part of Darwin’s law to react upon
external circumstances and to optimize their behaviour in order to survive
as species. Management can be described in this sense as leadership (active
management) and common, instinctive behaviour (self management or self
organization). Human ’management’ is not free from those elements, but
we belief that cultural and civil progress is based on the fact that human
beings substitute those elements with intellectual leadership and rational self-
organization, though the history of the last hundred years seems sometime
to be in opposite of this opinion [34].

Project (management) in today’s understanding is an organized way toOrganization
approach a pro-jection. Probably since the first scientific articles on Project
Management were written down [26], it became evident, that concerning the
finite duration of a projects, it’s evolution can be characterized in terms of
life-cycle or project-phase models. How to describe those phases in detail
and how to deal with them is part of different Project Management schools.

The third basic term IT is actually not Internet Technology but ratherInformation
Technology Information Technology. Information Technology is based on a Computer

as a hardware device and a Program specifically build for that Computer,
which we reference as software. Up to the 70th, Hardware and Software
was originally bundled, thus the software and in particular the Operating
System (OS) of the hardware was not particular offered and purchased but
rather part of the Computer system itself and development. New releases
were covered by the license fee and maintenance contract required to run
the Computer system. Of course, at that time dozens of Computer suppliers
were in competition. Apart from the big players IBM and DEC, still Hon-
eywell, Interdata, CDC, Nixdorf, and Wang had their substantial share. All
of those were supplying completely different and vastly incompatible hard
and software solutions: From connectors, cables, machine representation of
bytes and words, system architecture, programming languages, communica-
tion stacks, tape and disk drives, terminals, and of course operating system
and the human interface.

While those companies made a lot of money at these (gold rush) days, the
situation for the customers and users were rather unfavourable. In particular
the scientific communities required a common computing framework using a
specific high-level program language to be generally used (FORTRAN) and
developing sets of libraries for scientific calculations.

Further, inter-communication between different computer systems was
still difficult. Data transfer was facilitated by tapes (reels) written in a stan-
dard format, program-to-program communication among the vendors still

23

unheard of. While the OSI1 tried to develop a common computer communi-
cation framework, the DoD2 has already succeeded setting up the so-called
ARPANet3 in the US, running the predecessors of the TCP/IP protocol
suite. This progress was partly based on a new mid-level computer language
developed by Kernighan and Ritchie at the Bell Laboratories originally im-
plemented on UNIX Operating System (OS) running on a DEC PDP-11 [23].
The UNIX OS already provided the TCP/IP communication stack in the C
language and due to the unrestricted license policy by the Regents of the
University of California, UNIX became wide-spread in the academic world
[38].

While these developments took place in the scientific community, the IT
business regarding commercial solutions was still in the hand of the hardware
vendors. This changed substantially with the advent of the Personal Com-
puter (PC) by IBM in 1981. Now a standardized platform was introduced
which allowed to decouple hardware progress from software development.
Start-up companies like Novell,Microsoft, Lotus, Corel and many others used
this new platform to offer customer and end-user specific software products.

For today’s understanding of IT Project Management the elements UNIX UNIX
with it’s scientific background standardization of the OS (not to forget
POSIX4 DIN/EN/ISO/IEC 9945 compliance), reduction of computer lan-
guages and hardware, and of course the rapid introduction of the Internet
are all equally important.

Practically, no IT project can be set-up ’confined’ to service one platform
only, but rather has to interact with lots of external systems by means of
(more or less) standardized interfaces. Naturally, this yields a certain amount
of complexity to IT projects and requires specific management skills and
tools.

2.1 Tasks and responsibilities of a Project Manager

Duties and responsibilities of a project manager or a Project Leader (PL)
depend of course on the tasks upper management has assigned to him or
her. Further, since PLs may change during the evolution of the project, the
tasks depend on the state of the project. It is not uncommon to change
Sub-Project Leaders (SPL) under certain conditions, in particular if those
conditions become critical or even over-critical.

Starting as a PL , the first and most important task is, to ask questions. Questionnaire
A possible breakdown of questions can be found in figure [2.1] [33].

The second most important aspect is, whether you as a PL have already Experiences

1Open System Interconnect
2US Department of Defense
3Advanced Research Project Agency Network
4Portable Operating System Interface

24 2.2 What are Stakeholders ?

Figure 2.1: Project Manager’s Questionnaire to upper Management [33]

experience in the technical field described and/or any project management
experiences. Both circumstances have to be clearly signalled to upper man-
agement. Of course, knowledge can be gathered in the running project; but
has to be present at critical phases. The third but in practice often neglected
item is, whether you are capable to personally guide and manage a team of
people. This requires involvement (in particular emotional), communication
skills, trust in your own work (to be signalled to the project team), and cer-
tainly a large amount of standing, in particular against upper management.

2.2 What are Stakeholders ?

Today’s IT projects are typically not confined. While back in the 90s, Sun
Microsystems was able to develop and promote the JAVA computer language
practically from scratch, it is more likely that even any new idea has to be
placed in the real existing world.

Whether a new software has to be introduced in your company, or you
plan to roll-out a new product ’compatibility’ is a key-factor for success.
In order to additionally achieve economical success, ’acceptance’ is another
buzzword the project should aim for. While the first is an technical issue, to
achieve ’acceptance’ requires human intervention and explanation to people,
whether internally, business partners, or potential customers.

In general , all parties which have an interest on the project should beStakeholders
considered as Stakeholders and consulted frequently. Stakeholders are in
return important for the final success of the project and can act as friends
or foes in particular during critical phases of the project. Thus, it is import

25

not only to report the progress (and/or problems) to those, but also to take
their concerns serious and to react on those. Certainly, it is a good idea
to document the project’s progress and phases transparently, i.e.. on an
Intranet Web site.

According to [33] stakeholders include:

• (Upper) Management
• The project manager (PL)
• The project team
• Project sponsors
• Customers
• End users
• The community

2.3 Project phases

According to our current understanding, any project needs to be subdivided
into four phases:

1. Initiation – get the idea, study feasibility, define a raw project layout Initiation

2. Planning – detail project including schedule and resource planning Planning

3. Execution – final detail product design, coding, testing, implementa- Execution
tion

4. Termination – release and roll-out of the product, terminating the Termination
project, lessons learned

The duration of each individual phase depends on the complexity of the
product, as subject of the project . How we realize the planning, and how Product = Subject

of the Projectwe organize the execution phase depends on specific project management
methods used.

In particular for larger projects, the planning phase could be organised
as project in itself. The coding and testing of the software during the exe-
cution phase is often delegated to external companies which need to setup a
project plan by them self. Thus, we talk about a Multiproject Planning or a
Programme. Programme

2.3.1 Project versus Product

Identifying the Product, to be Subject of the Project, we need to consider two
interrelated streams:

• Project planing, execution, management and supervision

26 2.4 Project Management: Compliance and Conformance

• Product design, realisation, while conforming to specification and qual-
ity

However, running a project is always determined by realizing the product ;
the project’s goal.

Often, the principals of of project management are tailored to achieve this
aim, or even sacrificed in case the current methods seem to be inappropriate
to realize the tasks.

The product thus has a significant impact on the project: Product devel-Product
development =
Driving factor for
the Project

opment is driving the project. After more than 50 years of SW development,
we understand more deeply, that Software as a product has it’s own merits
determining the project’s organization, which yield a typical and distinguish
IT Project Management.

2.4 Project Management: Compliance and Confor-
mance

Today’s IT Project Management is based on a stet of standards:

• General Project Management Frameworks, including in particular meth-
ods for Quality Management
• Software Engineering Models, including SW design, integration, (au-

tomatic) testing, while using special Frameworks and Tools for Source
Control and Defect Management

The most global and uses project management frameworks and standards
are now briefly introduced.

2.4.1 Project Management Institute (PMI)

Project Management Institute (PMI) founded in 1969 published in Project
Management Journal 1983 a special report containing the results of the so-
called ESA project. This is considered to the predecessor of the ProjectPMBoK
Management Body of Knowledge [21] and used as a framework for PMI in
order to set-up a program for further accreditation and certification.

The PMBoK is a knowledge based Project Management approach and
acts as one of today’s PM references and is filed as ANSI standard ANSI/PMI
99-001-2004.

2.4.2 PRINCE2

PRINCE2 is the synonym for ’PRojects IN Controlled Environments’, Ver-PRINCE2 and
ITIL sion 2. It has been developed by the British ’Office of Government Com-

merce’ OGC [30] which is also founder of ITIL (IT Infrastructure Library)
[29] recommendations. While it is in use since almost 25 years now, unlike

2.4.3 ISO 10006 / DIN 69 90x 27

PMI it follows a more easy and process-oriented project management ap-
proach known as ’Management by Exception’. Thus, it provides a framework
of ’what to do’ in specific situations, unlike PMI’s "how to do". PRINCE2
can be adopted to any projects not just for IT projects and is widely used
in industry.

Potential project managers can be certified by accredited organizations
Comparable with ITIL, the first degree is ’Foundation’ while the more ad-
vanced user may achieve a ’Practitioner’.

2.4.3 ISO 10006 / DIN 69 90x

The German DIN (’Deutsche Industrie Norm’) 69901 is the predecessor of
the DIN 69900 which introduced the so-called ’Netzplantechnik ’ and defines
in it’s first part the basic terminology for project management. The third
part however, introduces a work breakdown structure (WBS; german ’Pro-
jektstrukturplan’) and finally the ’Netzplantechnik ’. Part four provides the
framework for organizing a project, regarding leadership (PL) and teams.
Finally, part five gives a definition of project phases and how to report com-
pleted projects.

The companion standard ISO 10006 has been published in January 2004
additionally as DIN ’Norm’. It’s scope is to provide a guideline for quality
management in projects, broken down in eight chapters and comparable to
the standard DIN ISO 9001.

2.4.4 SCRUM

SCRUM [57] (the word is not an acronym but rather originates from foot-
ball), is a relative new software development framework considered as part
of ’Agile Project Management ’ [2] with a lot of inertia. Though is not an APM
official standard, it can be understood as a particular ’school’ or method.
Unlike the classical or legacy PM method, the project’s subject (we call that
the ’product ’) is not fixed at the beginning of the project, but rather the
product’s qualifications and attributes are ’formed’ during development. In
short, the product is determined by the project and not reversely. In classi-
cal PM the project plans are altered as much as it is required to meet the
initial product design.

2.4.5 SEI

The Software Engineering Institute SEI at the Carnegie Mellon University
[22] is one of the most experienced organizations regarding process man-
agement and quality of software, and publishing their results since 1986.
Not only, that they introduced the famous SEI process maturity levels, CMMI
but rather, today they promote the Capability Maturity Model Integration

28 2.4 Project Management: Compliance and Conformance

(CMMI), which is another cornerstone in software engineering and stands
as synonym for continuous process improvement.

2.4.6 ISO/IEC 12207

This standard, published in 1995, introduces the idea of a "Software Life
Cycle Process", in particular suited for tailored software (unlike standard
software). Here, the terminologies primary processes

• ordering,
• delivery,
• development,
• operation, and maintenance

the complementary processes

• documentation,
• configuration and
• quality management, verification, validation, and audit

and finally the organizational processes

• management and
• infrastructure

is introduced.

2.4.7 ISO/IEC 15504 (Spice)

The Software Process Improvement and Capability Determination Spice
model [58] has been poured into the standard ISO/IEC 15504. Spice doesPRM & PAM
not only provide a Process Reference Model (PRM) but in addition also
allows to assess they achieved quality by means of a Process Assessment
Model (PAM) and thus is able to determine the maturity level of a process,
comparable to SEI’s definitions. In particular, the automotive industry uses
Spice as quality framework.

2.4.7 ISO/IEC 15504 (Spice) 29

Background, Exercises, Facts

• Task 1:
Visit the web pages of the project management organizations:

– http://scrum-master.de
– http://www.apm.org.uk/
– http://www.pmi.org
– http://www.pmi-muc.de/
– http://www.prince2.com
– http://www.ogc.gov.uk
– http://www.sei.cmu.edu/cmmi/
– http://www.scrumalliance.org/
– http://www.isqi.org/
– http://www.dgq.de/
– http://www.gpm-ipma.de/
– http://www.12manage.com/

• Task 2:
Order that list according to the ’frameworks’ (standards) discussed
above. Complete the missing ones while ’googling’ for them.
• Task 3:

On some of those web pages, a short summary or method diagram can
be found. Download and print these for later reference.
• Task 4:

How to obtain the respective DIN or ISO standards?
• Task 5:

Make a ’pyramid’ drawing of the hierarchical breakdown of a project
organization. Consider upper management, the PL, the team leaders,
and the team.
• Task 6:

Identify and attach the stakeholders to that picture.
• Task 7:

Consider projects build up from several sub-projects. How shall this
organizational scheme be extended to your opinion ?
• Task 8:

How to characterize the rôle of a PM ? Is it more operational project
management or more strategical ? Assign rôles to the project organi-
zational levels.

http://scrum-master.de
http://www.apm.org.uk/
http://www.pmi.org
http://www.pmi-muc.de/
http://www.prince2.com
http://www.ogc.gov.uk
http://www.sei.cmu.edu/cmmi/
http://www.scrumalliance.org/
http://www.isqi.org/
http://www.dgq.de/
http://www.gpm-ipma.de/
http://www.12manage.com/

Though Project Management
is a cultural achievement,
it requires particular circum-
stances to unroll it’s effec-
tiveness. These circumstances
are usually outside the sphere
of influence of the particular
project itself, but have an im-
portant impact on it’s success
or failure.

Part II

Pre-Conditions for Project
Management

31

Chapter 3

External and Internal
Pre-Conditions

3.1 Business Plan

Projects, and in particular IT projects aim for a certain goal. This goal is
typical a set of assumptions about the functional (technical) achievements
of the project and the corresponding business advantages accompanying the
realization of the project.

Depending on the project, this might be a direct and measurable eco-
nomical benefit, or yield an indirect and perhaps a marketing advantage
with respect to our competitors, or at least increasing the reputation against
our customers, or supplier chain.

Today, it is a characteristic of an IT project, that the (technical) goals
are pre-determined externally and do not depend on our behalf. Rather, we
have to head for ’progress’ because either competition forces us to renew our
products constantly, or perhaps the public opinion or even standardization’s
and requirements for conformity pushes us to re-define our product, thus
new releases come out frequently.

Good examples for these requirements are the ever changing versions
of Microsoft’s Word ; requiring ODF capabilities and actually providing
OOXML instead the open standard. Other samples are Adobe’s InDe-
sign with now ’Web 2.0’ capabilities and or course the constant fight of all
email software against malware and spam.

Thus, unlike a typically project, IT projects are driven from outside
(except for a few). This makes management ’fed’ about IT projects: "Why
do we have to spend again money for this development; the old solution
is working well". In turn, IT projects can be characterized to be

• market driven (by competitors, standardization requirements, quality
standards)
• cost driven (reduce production/operating/maintenance costs)

33

34 3.1 Business Plan

• technical driven (introduce innovation and/or substantial improvements).

Considering the volume of IT projects under the current market situa-
tion, the economy, the ratio between these dependencies is about 6:3:1 to
be optimistic. Or course, setting up IT projects may be driven by all three
aspects. One example to mention is Apple’s move from IBM’s PowerPC
platform to Intel CPU s.

3.1.1 Technical Evaluation and Market Analysis

The start of a successful IT project is a good understanding of the reasons
why it should be carried out. The dependencies can be picked up from figure
[3.1].

Figure 3.1: Dependency triangle for project targets

Upper management has to evaluate what fuels the forthcoming IT project
and has to provide an impact analysis. A Business Plan has to be carriedBusiness Plan
out, which incorporates the current decisions and provides a guideline for
the Project leader and the Project team during every phase of the project.
As indicated, while the project is running the goals and the dependencies to
and how to finish the project may change, since neither upper management
nor the Project leader has the definitive Crystal Ball to know the future.

On the other hand, a lot of IT projects focus on solutions for which
the original assumption has already been superseded. In case of substantial
deviations between the original targeted goals and those actually realized in
the current project, a gap between the real project and the believed project
opens up, which has important (negative) consequences for the project and
perhaps makes the original Business plan invalid or obsolete. Certainly, this
has an important impact of the recognition of the Project Leader, the Project
team, and the project itself by upper management.

According to a recent analysis from the Standish Group (see figure [3.2])
[18], a significant percentage of IT projects is challenged or even fail:

3.1.2 Return-On-Investment Calculations 35

Figure 3.2: Chaos 2004 Survey Results [18]

The reason for this situation can be characterized due to

• external factors: competition, moving market situation, technical risks
• internal factors: limited resources, challenging time-line, underesti-

mated budget

While the external factors hardly can be controlled, it is not uncommon
for the market leaders to pet the market such, the acceptance of the new
products is raised and thus the risk of a failure is reduced and of course the
market shares are maximised. The roll-outs of new products from companies
like Intel or Microsoft are often accompanied by such additional marketing
mechanism.

3.1.2 Return-On-Investment Calculations

Let’s assume an IT project has finished a certain software (product). From
the company’s perspective an IT project can be considered successfully, in
case one of the following targets have been met:

• Functional : The product fulfils it’s technical requirements.
• Market share: The products helps to improve the company’s market

position.
• Economical : The revenues realized by the product exceed the devel-

opment costs (break-even point).

Any delays in the delivery of the product has significant impacts on all ROI
those targets. While functional and marketing issues can be considered ’soft’
targets and the arising consequences are difficult to estimate, the economical
dependencies can be estimated by means of a Return-on-Investment (ROI)
calculation, as shown in figure [3.3].

Typical examples for such a calculation are the Roll-Out of Microsoft’s
Windows 98. Here it was clear from the beginning, that this update to Win-
dows 95 (due to the difficult and almost complete change of the peripheral
driver model [VMWD]) did not meet the required technical maturity, due to
marketing constraints, the product had to be delivered in time.

36 3.2 Project Management in Conflict

Figure 3.3: Return-on-Investment calculation [24]

3.1.3 The Mission Statement

Once the projects targets are defined and upper management has finally
committed to provide the required resources (during the time, the project
spans), the final ’Go’ for the project has to be announced with the project’s
Mission statement.

The Mission statement has to fulfil the following criterion’s:

• Formal : The wording has to be clear and concise; usual phrases have
to be avoided (i.e. ’most important’, ’lighthouse project’), the targets
of the projects have to be named explicitly.
• Content : The project’s targets have to be reachable; they have to be

confined, thus do not depend on external circumstances.

The Mission statement should act as guideline for all project team mem-
bers and of course the PL . Upper management has to convince everybody
that they stand undoubtedly behind the Mission statement and that the
success or failure of the project is considered their own success or failure.

3.2 Project Management in Conflict

In general, any (IT) project has to deal with limited resources and competi-
tion among other projects. It is one of the initial task of project management
to identify not only the risks but in addition the potential shortages and con-
flicts for his/her dedicated project. Conflicts arise in case the resources don’t
meet the project’s requirement, as detailed in figure [3.4].

3.2.1 Balancing Budget, Deadline, and Quality 37

Figure 3.4: Sources for conflicts in projects [24]

While practically conflicts in particular among project (and staff) team
members can not be avoided in the running project; conflicts with upper
management are often more severe for any PL . Possible reasons may be:

• Project targets and their deadline are not clearly defined or deviations
are not reported, thus hit upper management unprepared.

• Allocation of resources is not possible due to budget restrictions and/or
the budget has already been used up.

Project managers should also consider during the definition phase of the
project and before any commitments against upper management are carried
out, what are the potential penalties in case the project does not succeed. In
case no such penalties exist, the engagement for the project of in particular
regular staff members may be reduced (’business as usual’).

3.2.1 Balancing Budget, Deadline, and Quality

We have already discussed the impact of the Deadline with respect to the ROI
(figure [3.3]). However, in IT project management it is common sense not
only provide the product in time, but also to achieve a customer-acceptable
quality. This includes not only to meet the functional requirements (as prob- Magical Triangle
ably beaconed by marking already), but in addition to ship a product which
is reasonable mature and considerable bug-free. IT project management is
always under pressure to achieve quality under the current project condi-
tions. This is know as the Magical Triangle of Project Management [3.5]:

38 3.3 Project Conditions

Figure 3.5: Magical Triangle of Project Management [24]

3.2.2 Effectiveness versus Efficiency

In order to achieve the defined goals, project has to be effective. However, the
limitation of resources requires in addition to organize the project efficient.
After a project step or phase has been finished, it is task of the Controlling
to evaluate both, Effectiveness and Efficiency. On the other hand, there are
no ’golden rules’ how to achieve efficiency initially, except for a very few:

• Avoid complex project structures and project plans; complexity is often
aligned with imponderability.

• Allocate resources when it is required and don’t delay them; delay is
typically a synonym for less efficiency.

• Identify problems and solve them as soon as possible; otherwise prob-
lems will turn into risks.

Figure [3.6] shows a breakdown of potential factors impacting efficient
project management.

3.3 Project Conditions

Today’s IT projects don’t happen in a virgin environment; rather they are set
up by companies which have already finished several other projects. Thus,
the foreseen project leader has to make himself (or herself) familiar with the
existing conditions the forthcoming project has to be carried out under [3.6].

We have to discuss these issues regarding

• the existing technical framework,

• the oorganizational circumstances, and most important -

• the aadministrative competencies and reporting structures.

3.3.1 Existing Technical Framework 39

Figure 3.6: Success factors for efficient project management [46]

3.3.1 Existing Technical Framework

While studying offers for IT project managers in the big newspapers often
a particular development framework (like Visual Studio or Eclipse) is men-
tioned, for which the demanded project leader should have special knowledge.
To be honest, either here a sub project leader (SPL) is required, or the hu-
man research (HR) department has no good understanding what the tasks
of project managers are.

Certainly, the knowledge of the technical software development methods
is beneficial and a deep understanding here allows to judge the potential
risks and perhaps quality of the code produces by the developers.

Integrated Development Environments (IDEs) are typical for certain Development
frameworkscomputer languages. Today’s, those framework allows to collaborate; thus

developer share a common repository and the access may be client/server or
web-based. Most common today, in particular for the programming language
Java a lot of development frameworks exist which allow an efficient usage of
the object-oriented features of this language.

The development frameworks may additionally include software mod-
elling techniques which in today’s understanding is UML (Unified Mod-
elling Language). Those frameworks have to stay ahead the current state
and version of the software modelling language. From here class and ob-
ject hierarchies can be retrieved, which makes coding effective and efficient;
though not guaranteeing that the code is efficient as well.

Frameworks are required as well in order external resources have to be
includes. This is the case if PL/SQL code has to be developed, which is only

40 3.3 Project Conditions

possible accessing directly the database instance.
While occasionally IDEs include a (favorite) source control managementSource Control

Management (SCM) system, in general this is set up distinct. Typical choices are the
client/server based systems Subversion or CrossVC to mention the public
domain tools in the first place and IBM’s (Rational’s) ClearCase. Most of
the systems provide a commonly shared repository to be accessed by UNIX
and Windows clients, which is not uncommon for e.g. Java software projects.
Of course these systems differ significantly the way the code is represented
to the developer and how to derive a ’release’ out of the sources which is
called the ’build ’ process.

Though, it is not uncommon to store development documents in theDocument
Management Source Control system as well, more practical and more efficient is to use

a dedicated system which allows to organize and to review the documents
having one central repository. While developers have access to and work
with their IDE, architects, quality managers, and stakeholders included for
revisiting the documents require a separate document management system
automatically changing revision numbers, indexing the document, and pro-
viding a history of changes. However, in practice often documents are send
by mail, and the last version resides in a private folder without changed the
document’s revision.

In addition, a clear structure and reliable filing to the documents is re-
quired, not to search for documents to long. Thus the document filing should
be realized in terms of URLs (Universal Resource Locators) which is com-
monly called hyperlinking. A good system achieves this not only per docu-
ment but rather per section, in case the document templates are structured
adequately and obey a defined hierarchy.

Quality Managers can be set up in the current project as sub projectQuality
Management leaders or they may be organized separately. In this case, they report di-

rectly to upper management and don’t need to follow the advises of the PL.
Typically the quality of software is tracked by a special tool, which is essen-
tially a database application with a (Web) front-end to enter and to follow
bug reports. In software development terminology, deviations of the tested
software with respect to the specification is called a ’defect ’. Such systems
(ie. HP Quality Center) not only allow insert defects, and to define a ’life-
line’ for it in terms of the attributes priority and status, but also to combine
defects with the same source.

While the single defect is important for the individual developer, the
regular obtained quality report, showing the distribution of defect priorities
and correlating them with the sources tells much about the current state of
achieved quality.

In order to obtain a complete picture, not only the individual reports
are of interest, but rather how the development of defects took place, in
terms what has been tested and how intensive the tests were done. A com-
plete picture can only be obtained, if in addition the Design Documents are

3.3.2 Existing Project Organization 41

considered and the complete Use and Test Cases are filed (see figure [3.7]).

Figure 3.7: The role of the Quality Management Centre as Hub

3.3.2 Existing Project Organization

Entering an existing project team as PL, you first may want to see and
judge how this team performed in the past. The best way is to check the
way the Project Office works, how do people report their activities in terms
of Time Sheets, and perhaps which projects were already completed and in
what state.

In order to achieve continuity a well organized Project Office (PO) is in- Project Office
dispensable. Filing of documents, ordering of trips and hotel rooms, booking
meeting rooms, account management, managing the team’s agenda, prepar-
ing meeting documents, and many other activities are on the list of support
activities.

The PO may act in addition as Centre of (informal) contact. As project
manager make yourself familiar with the organization of the PO, streamline
document filing and co-ordinate important agenda items with the responsible
people here. Common and repetitious tasks should be delegated to the PO,
which in turn has to understand it’s task as Project Assistance and not just
administration.

While the project is ongoing, the project members have to report their ac- Time Sheets
tivities on time sheet lists, in order to monitor the time required to complete
a specific task. Of course, keeping the Time Sheets to-date takes attention
and time and depends on the granularity of the reports.

Together with the SPLs, the organization and the items to be subject
for the time sheet has to be defined and communicated. Limits on the
particular items (in terms of project hours) have to be included and the
project’s progress has to be correlated with the reported hours.

42 3.3 Project Conditions

The time sheets are subject of budget control and thus have to be re-
ported to upper management. In addition, a good on-line reporting system,
which has hooks to the IDE and perhaps the QA system, relieves the team
members from stupid recording of the actives and in addition improves the
level of correctness. The scope here is, not to control the team members bur
rather to identify budget and time shortages.

It is certainly a good idea to gather information about successful andProject Heritage:
Styles, successes
and failures

less successful projects realized by the company or under the current project
organization. The bottom line here is the quality of the information. A good
project organization would provide a project completeness report; a badly
organized project probably will leave the remnants of its work (directories
and files on the file servers, code in the Source Control system) unchanged
and visible for everybody.

In addition it is worthwhile to interview the former project members and
perhaps managers for ’lessons learned ’. For any company and organization
it is important to steadily improve the quality of project management. This
can be done by internal and/or external course, allowing project members to
achieve certificates, and file important documents and templates as guideline
for future projects.

3.3.3 PLs Competence’s

One of the most important tasks of (new) PL is to discuss and receive the
necessary competence’s from upper management. Bigger projects have atSplit

responsibilities least an administrative Project Manager being responsible for risk manage-
ment and in general controlling, and a technical Project Manager in charge
of technical co-ordination and quality management.

Typically, several Sub Project Leaders (SPLs) are foreseen, dedicated to
co-ordinate fixed tasks and reporting PLs.

In addition, a Chief or Business Architect can be established, who is re-
sponsible to co-ordinate development with Demand Management or Market-
ing and perhaps acts as co-ordinator with respect to customers or partners,
to whom interfaces are designed.

Apart from ’managing’ the project, the PL has to report the state of theReporting Chains
project to upper management. Two types of reports shall be considered:

1. Standard reports, defining in a defined and concise way the current
status of the project, w.r.t. to particular sub-projects or fields.

2. Exception reports, which need to be raised in cases the project runs
suddenly out of plan, a particular risk has been identified, or the team
(project) suffers due to a substantial crisis.

Reporting chains and acceleration schemes have to be clearly defined, in
order not to deadlock the project.

3.3.3 PLs Competence’s 43

It is the bare responsibility of the PL to react ’well-behaved’ during a
crisis: regarding the project team and in particular concerning upper man-
agement.

The current financial crises even of large international banks show clearly
their incompetence setting up and utilizing corresponding exceptional report-
ing channels.

While the budget for the project has to be allocated by upper manage- Budget Planing,
Recruiting,
Ordering

ment, the (efficient) spending of the money is one of the responsibilities of
the PL. Responsibility might not coincide with competence.

Considering the financial foundation of the project, it is important to
understand the following distinctive sources of the project budget:

• CAPEX (Capital expenditure) [48]:
For the budget a certain fixed amount of money is allocated to be
spent until the project is finished. In particular, external consulter’s
(like developers) are hired under the condition of a limited budget or
time frame.

• OPEX (Operational expenditure) [54]:
This money is taken out of the budget for general operations. Internal
project team members may be funded by OPEX means.

It is not uncommon for a budget to run on both CAPEX and OPEX
means; however for internal reports (time sheets), this differentiation might
not be required.

In case the projects does not exceed the allocated budget, certainly it
is up the PL to decide where to use the money for. s outlined this sit-
uation characterizes perhaps 2/3 of the project lifetime. Overspending is
common for most IT projects. Whether upper management is willing to
put more money into the project depends definitively on a convincing PL.
It is certainly helpful, if the project management made up their homework
and could provide that the project until now is under (budget) control, the
financial risk of not spending the expected amount of money to (almost)
finalized project is higher rather than allocating N more Dollars or Euro to
the ongoing project.

As discussed, the main function (according to upper management) of the Project Controlling
PL is to control the ongoing project and to focus it in the interests of the
company. In effect, controlling is a rational method to estimate risks; thus
controlling and risk management’s are twins. Of course there exist a thin
line between real risks and reported risks. The example of the current bank
and financial crises shows, that real and reported risks might not coincide:

• In order to estimate real risks one needs measures.
• In order to convince upper management one needs to present estab-

lished methods.

44 3.4 Project Initialization Summary

In the situation of a PL, an underestimated risk may break the whole
project, while an overestimated risk may block it. Here, a good relationship
to upper management is one key to survive and eventually master the crises.

3.4 Project Initialization Summary

This chapter approaches to summarize the necessary tasks required to Initi-
ate a Project. A mission statement together with a business plan are consid-
ered to be the most prominent documents describing the project, it’s funding,
and the project’s subject: The product. The picture is incomplete without
taken into account the current project management and project operational
circumstances and conditions. Since the Project Manager (PM) itself is one
of the most vital parts of the project, his (her) responsibilities and rôles
needs in particular a clear definition.

Figure 3.8: Supertramp: Crisis? What Crisis?

45

Background, Exercises, Facts

• Task 1:
Identify the essential steps to set up a project (we call that later the
’Project Initialization’ phase).

• Task 2:
What is the ’ranking’ of those steps?

• Task 3:
Who is determining the project running conditions? The PM or the
organization? Discuss potential conflicts and the responsibility of the
PM !

• Task 4:
The original financial funding of the project very often is insufficient to
complete the project. ’Google’ for the name of the project management
’discipline’ which is assigned to !

• Task 5:
’Google’ for the terms CAPEX and OPEX. What is the main difference
between both financial sources regarding their tax relevance?

Do all the hard parts of
management: Setting up
teams, coaching, adjusting
people’s assignments, de-
ciding which risks to take
and which one’s to avoid,
resolving conflicts, hiring, and
motivating people. This is the
guts of what real managers do.

The Deadline – Tom DeMarco

Part III

Team Management

47

Chapter 4

The Project Manager and his
Team

From the previous chapter we have seen that Project Leaders (PLs) or
Project Managers may have different tasks, in particular whether they are
assigned more administrative or more technical rôles. However, apart from
their specific tasks, there is one main skill they should have:

Leading people in a team.

Team management is a key for effectiveness and especially efficiency. If
the team is irritated or spoiled because of bad management, only very little
output can be expected. Rather, the individual members of the team follow
their own interests or perhaps fight against each other, or (individually or
commonly) against project management. Thus, to streamline the individual
interests with the project, and to put the team in a position to actively
anticipate (positively) the commonly achieved results is a main factor for
motivation.

Though it is possible to stimulate a team using ’psychological means’ and
to convince team members in particular during special workshops/events, in
the long run only a qualified team management, balancing the project re-
quirements with the current state of the team members will yield sustained
results. To turn it the other way around:

Once project management requires and recruits highly skilled people,
turning the tables, exactly those people will demand a project manage-
ment which acts professional and takes their requirements seriously.

Those team members are Stakeholders by definition and will impact the
results of the project significantly. Therefore, we will discuss the following
general tasks for project management:

• Setting up teams

49

50 4.1 Setting Up Teams

• Organizing the team’s work
• Reacting in case of conflicts
• Supervising the team’s work

4.1 Setting Up Teams

4.1.1 Organization of Project Management

After management has made it’s mind to start the project,

• a business plan has been established and the first ideas about
• a mission statement have been put in paper, and even before
• a concrete project plan has been worked out, the first impression

of the complexity and the basic requirements of the forthcoming project
can be guessed.

After having answers for the basic questions:

• What is the deadline of the project ?
• What budget is required to successfully run the project ?

this should be the starting point to define the least (minimal) manage-
ment structure of the project; and thus how to shoulder the tasks, which
organisation the project should have, in particular regarding

• physically office spaces and required material (PCs, Notebooks, Servers,
Software, etc.),
• logistics project office, and most important
• administrative reporting chains.

These decisions should be mutually carried out with the project man-
agers; if already designated. Of course, during the lifetime of the project
these conditions are subject for change. In particular, the PL should be
free (and entitled) to appoint certain technical tasks to SPLs. Reversely,
changes in the other aspects during the running project will have an impact
on at least the deadline, though it might be necessary to improve the project
conditions significantly on demand, in order to meet the required objectives.

4.1.2 The Project Manager

Generally, it is not easy to try to define what somebody makes a ’good’
project manager; and how to convince management that you are the one to
choose. What is required for project management ?

4.1.3 Leadership models 51

• The best qualification is practice; once your résumé includes a reference Qualification
regarding the (successful) leadership in a comparable project, you are
fine. For newcomers, certificates in the project management method
required/requested for the current job (PMBok/PRINCE2) is a must.

• Since IT projects are technical driven, expertise in the currently em- Skills/Know-how
ployed techniques is required to master the different tasks.

• Project Management is in the first place risk management. Risks can Dedication
be mastered successfully only with a certain of amount of blood, sweat,
and perhaps tears. Only if you are willing to pass those phases, the
project will benefit and eventually complete successfully.

• Upper management has appointed you to realize the expectations of Loyalty
the company; which might not in every phase coincide with the interest
of the project. Loyalty has different sinks: Management, team, project
tasks. Be aware ’sitting between chairs’.

Be prepared to fulfil several rôles as PL:

• You are the manager of your people in charge, the better you do re- Leader
garding your task, the better they will perform.

• A project manager has to have not particular more insight into specific Guru
project items, but should have a broader and more coherent view.
Thus, your decisions are expected from the team to reflect this; thus
anybody finally accepts those.

• Your are the agent of the company’s management fulfilling the tasks Agent
of

• a team (and reporting as leading staff member), run an organisation Organiser
and realizing the projects objectives (defined by sponsors)

• It is important that you don’t forget about yourself. Sincerity is a Yourself
key for authority. The complementation of leading and organisation
is tentatively shown in figure [4.1]. Of course, while applying for the
job as project manager, make up your mind whether Yourself fits with
Dedication and Loyalty.

On the other side, your interviewer will decide whether your referenced
Qualification and your Skills/Know-How meet the projects requirements.
Apart from specific qualifications/skills, for System Engineering IT projects,
it is expected that the PL incorporates the following management concept
(figure [4.2]):

4.1.3 Leadership models

Any IT project management leadership models have to concern that man-
agement takes place in an complex environment, which is determined by (see
figure [4.3])

52 4.1 Setting Up Teams

Figure 4.1: Complementation of Leadership and Organization in Project
Management [24]

Figure 4.2: Project Management concept according to System Engineering
(SE) principals and guidelines [24]

• the PM organisation (already existing to be build)
• the chosen PM methods (see next section),
• the supporting software tools for PM (discussed in the forthcoming

chapters), and
• the (human) leadership capability of the PL.

According to our current understanding, the project management lead-
ership model has to obey a systemic approach, as laid out in figure [4.4].
Effectively, this is a ’people business’ which takes into account

• the different qualifications,
• the cultural impacts (of multi-cultural teams), and
• the individual (human) interaction behaviours

of the team members.

4.1.4 Declaring PM methods 53

Figure 4.3: Determinants of Project Management [10]

4.1.4 Declaring PM methods

We have already realized, that the choice of the project management methods
is very often pre-determined by the heritage of the company, or depends on
external circumstances and the nature of the project, or perhaps is already
defined by the sponsor of the project (DIN 12207, DIN 10006, ISO 15505).

Of course, those models have to be adjusted with the current project
and a particular procedure model has to be carried out. This has to be
explained to management and sponsors and finally has to be agreed by them.
In addition, it is not only necessary to inform the project members about
the chosen procedure model, but in addition to let them participate and to
further develop those methods. This participation could be done by means
of a kick-off meeting or workshops, which should aim to actually apply the Kick-off meeting
methods so sub-projects and tasks already appointed to the group.

4.1.5 Building a team

The project team will be eventually completed during the first phase of the
project and is perhaps subject of substantial changes during the lifetime
of the projects. The interaction of the team members during the project
impacts progress and outcome of the different tasks. Project leaders should
be aware that in particular a newly build team acts differently according to
the level of knowledge between each other [24]:

1. Formation phase:
The group members try to check each other. Since the current envi-
ronment is still unknown, often the PL is requested.

2. Conflict phase:
Self-organized sub-groups are established; one knows about the qual-
ifications/reactions of each other. Disputes among groups raise and

54 4.1 Setting Up Teams

Figure 4.4: A systemic approach for complex systems [10]

occasionally, even management is questioned.

3. Normation phase:
Disputes are settled, friction is reduced, and mutual acceptance is es-
tablished.

4. Working phase:
The power of the team can now focus on tasks. The rôle of the in-
dividual team members is fixed and working. Perhaps some members
are heading for more challenging tasks.

A qualified team, able to master even complex tasks and reacting co-
herently and rational in difficult situations, can be characterized by the at-
tributes (see figure [4.5]):

• A small group of individuals with complementing skills,
• motivated and driven by a common task,
• willing to achieve the same results,
• while co-operating with engagements, and
• mutual responsibilities.

4.1.6 Delegation 55

Figure 4.5: Team building foundations [24]

4.1.6 Delegation

Delegation is a key feature of leadership. During the project, the PL has
to delegate some of his/her activities and responsibilities to other project
members. Two types of delegations are common:

• Permanent delegations
Here, the PL entitles Sub Project Leader (SPL) to fulfil defined (sub-
)tasks, mainly as result of a Work Breakdown Structure (WBS). Also,
project management can be realized in a team, perhaps in conjunction
with project assistance or with a junior project manager.
• Temporary delegations

Are used typically for restricted tasks which can be finished in a certain
time frame. In both cases, the PL as to clearly announce the delega-
tions and to officially entitle the project member among the team.

4.1.7 Skills and People CMM levels

In order to asset the skills of project teams, the SEI at Carnegie Mellon has CMMI
adopted their Capability Maturity Model to people (People CMM Version
2.0). Scope is not only analyse the current level of maturity (qualification)
but rather to allow management

• to set up programs
• to improve the competence of the individuals,
• to make team-work more effective,

56 4.1 Setting Up Teams

• to motivate team members and to raise their efficiency,
• to organize the groups in order to prepare them for the forthcoming

tasks.

According to this model, organizations can be assessed in the following
way (figure [4.6]):

1. Initial Level
Undefined process flow, unclear competence’s and responsibilities; rit-
ual procedures; team not involved.

2. Managed Level
Members work to hard, personnel objectives are unclear, missing knowl-
edge about solution concepts, restricted communication, bad moral
habits.

3. Defined Level
Missing streamlining between groups, thus little synergy. PL is not
capable to identify skills of team members and to efficiently incorporate
those into the project

4. Predictable Level
Project/Organization employs skills of all members. PL can predict
from the teams involvement the results of the project in terms of quality
and deadline.

5. Optimizing Level
Management tries to improve continuously the skills of groups and
team members by analysing the level 4 achievements.

Figure 4.6: SEI’s People Capability Maturity Model [1]

57

4.2 Organizing Teams

4.2.1 Project Office

The Project Office (PO) has already been introduced as

• Centre of administrative tasks,
• location of work-flow sheets and perhaps other document, and overall

as
• communication Centre for the project.

Practical experience shows, that the involvement in the project is related
to the distance of a project member’s office to it. However, if team members
are located to close, their efficiency is getting reduced by the busy PO (or
other circumstances). In addition, the PO should display the master plans
regarding the projects or sub-projects progress and perhaps a list of open LOP
tasks, a List of Open Points (LOP) respectively.

4.2.2 RACI Matrix

Common in projects is to assign certain tasks to persons. Complex tasks
however, require the involvement of many people, team members (or exter-
nals) respectively. One approach to make the assignment transparent is the
use of the so-called RACI matrix (figure [4.7]).

RACI is the acronym for ’Responsible’ ’Accountable’ ’Consulted ’ ’In- RACI
formed ’:

• Responsible for execution. Responsible
She/He is the Master or Process Owner : Person initially required for
the execution of the task, everybody else has to report to the Process
Owner.
• Accountable for sponsoring. Accountable

Person providing the budget for the task and required for it’s funding,
aka the Budget Owner.
• Consulted for additional know-how. Consulted

Person, which directly impacted by the task/project. In case the
task/project depends on him/her, he/she acts as Supervisor.
• Informed for the current state of the project. Informed

Persons, which need to know the results of the project/tasks, maybe
because they are Stakeholders.

In the RACI approach, persons or organizations are assigned a particular
rôle. Apart from the basic RACI approach, there are several variations in
public use:

58 4.2 Organizing Teams

Figure 4.7: Typical set-up of a project’s RACI matrix

• RACIS Supportive
required for supporting the project/task with particular resources.
• VARISC Verify and Sign Off

necessary for evaluation and verification of the task and responsible for
the final go and roll-out.

4.2.3 Meetings

Every project should have in addition a qualified meeting room, being per-
manent available and to use easily without the requirement for a long-term
scheduling and booking. Here, additional communication facilities (for eg.
video conferencing) should be available. Though today’s network capabilities
makes it possible to use any PC for conferencing; a meeting where people
are joined in a common room introduces significantly more ’group dynamic’
since it is much harder for anybody to escape.

Apart from the meeting room, the acceptance, results, and efficiency of
a meeting depends strongly on the following criterion’s:

• The meeting has to be scheduled in time , PO has to make sure, thatSchedule in time
the meeting is not conflicting with other major tasks.
• A well-prepared agenda has to be circulated which needs to be stream-Well prepared

Agenda lined with the SPLs.
• A meeting leader has to be assigned (perhaps in a turn-around fash-Assigned Meeting

Leader ion) and to be made familiar with the agenda and it’s objectives in a
preparation meeting.
• For the main items, objectives have to be defined and the project teamDefined Objectives

and/or particular members/groups have to be assigned to those.
• It is important that minutes include these objectives in a concise wayConcise Minutes

and reports about the achieved rustles have to be part of the forth-
coming meeting agenda (when they are due).

4.2.4 Document Filing 59

• Minutes have to prepared in a standard scheme , they have to be Filing Minutes
circulated and filed; perhaps with additional comments from the PL
and the group members.

• Meetings should be clearly organized and treated as important sub- Well organised
tasks. Otherwise, they will become obsolete, increase the level of frus-
tration, and steal of course project time.

4.2.4 Document Filing

A reliable document filing is necessary to increase the efficiency for the in-
ternal project communication allow sponsors and upper management an un-
digested control of the current project’s state. We have already heard about
the ’no-goes’ in document filing. However, what is the correct approach ?
Here we have to consider three important ingredients:

1. An extensible and hierarchical document location structure. Location
Documents have to be filed according to subject.

2. Adequate document templates. Templates
Allowing an uniform an easy movement in the document.

3. A qualified Document Management System (DMS). DMS

Providing automatic re-visioning of the document, building up indexes,
and allowing different ’views’ (by subject, owner, version, topic etc.) of the
documents under it’s control. One approach for consistent document filing
was developed by IBM is known as WSDDM Worldwide Solution Design
and Delivery Method [4.8]. WSDDM

Meanwhile there exist several public-domain products for document man-
agement, eg. Tortois [43] which either use a Revision Control Systems (here:
Subversion) in the background or directly a RDBMS (eg. MySQL).

Another approach is to use a GroupWare solution to allow this document Groupware
handling. In the case of IBM, the natural choice (until know) is Lotus Notes
[19]. Microsoft provides on the other side a tools called Sharepoint [27].
However, in addition public domain solutions (like eGroupWare [15]) provide
at least parts of the required capabilities.

Certainly, storing important documents in the ’Cloud ’ is not a useful
option.

4.3 Running Teams

4.3.1 Conflicts

The sooner, the later, every project runs into a substantial crisis. We define a
crises as substantial deviation from the project plan and objectives in terms

60 4.3 Running Teams

Figure 4.8: Structure of IBM’s WSDDM model [42]

of deadline, or completeness, or quality with respect to the experienced or
guessed current state.

A crises might originate from a variant of different sources; in particu-
lar internally and externally. One important reasons for a crises might be
conflicts in the team, yielding a substantial reduction of productivity. Fig-
ure [4.9] provides a breakdown between the productivity of groups and their
cohesiveness:

Figure 4.9: Correlation between group cohesiveness and productivity [11]

4.3.2 Workshops 61

4.3.2 Workshops

Workshops are useful in case, the crisis originates from technical or organi-
zational problems. In order to successfully complete the workshop, a script
should be prepared defining steps and rôles. Depending on the foreseen re-
sults, the workshop should take place outside the ’work arena’ and perhaps
off working hours. Since this includes additional attention and efforts from
the team members, it has to be prepared with management attention.

4.3.3 Mediation

It might be necessary to ask for support from outside the group, and perhaps
involve a mediator. A mediator acts always exceptional and outside all
reporting chains, thus the team members should feel free to tell their concerns
without any consequences. Mediation should take place unlike meetings and
workshops only with the groups or team members in conflict and happen
always none-disclosure.

4.3.4 Coaching

In particular for junior project members it might be good idea to organize a
’god father’ and to coach those members respectively. Unlike the mediator,
the coach is as member of project team familiar with the demands and
methods of the project. Depending on the work load the coach could be
recruited from a different group.

4.4 Controlling

4.4.1 Confirmations

The sub project leaders (SPLs) have to report directly to the project leader.
One of the tasks of the PL is to confirm their reports, to balance the results
with the original or modified project plan and to finally accept the work in
terms of intermittent mile stones. Typically, the project is broken down in
phases, know as Work Breakdown Structure (WBS). We will later see, that
Gantt charts are a typical mean to express phases and dependencies.

4.4.2 Auditing

One mean to improve quality is perform audits on demand or perhaps perma-
nently. For IT (software) projects audits are complementary to QA (Quality
Assurance) reports. While the latter focus on reported bugs (defects) accord-
ing to the test or use cases, auditing actually takes care about the source
code itself.

62 4.4 Controlling

Auditing is required in critical cases. One of those cases is to audit the
security impacts of the code and to verify the accepted methods are consis-
tently used. Another requirement may originate from SOX 404 compliance
[56]. Again here, the software has to be written in spirit of the law, and itSOX compliance
might be necessary to achieve compliance by means of a certificate due to
an external audit.

4.4.3 Reporting to Management

The Project leader has to prepare (at least) two different standard reports:

• Progress ReportsProgress Report
This report has to detail the current state of the project regarding
compliance with plan in terms of the achieved objectives and whether
and not the residual aims can be reached.
• Business ReportBusiness Report

The PL has to declare and to explain it’s expenditure and to correlate
that with the expected and forecasted spending. Here, the PO can
play a vital rôle in order to gather the required information:

– Summing up the team member’s time sheets [4.10] per sub-project
and project phase.

– Provide an overview about other spendings in terms of operational
costs, third party royalties and external contractors.

It is obvious to mention, that qualified (and verifiable) reports are
import in cases a critical situation of the project is encountered and a
• Exception ReportException Report

has to be provided, whose purpose is to raise upper management’s
attention about the project and enable mutual solutions for extraordi-
nary situations.

4.4.3 Reporting to Management 63

Figure 4.10: Reporting project activities in a Time Sheet [40]

Background, Exercises, Facts

Project Meeting Checklist:

1. Cause:
What is the cause for the meeting?

2. Goals:
What are the relevant goals to be achieved in that meeting?

3. Participants:
Who needs to attend the meeting?
Who shell lead the meeting?
Who is writing the minutes?
Who needs to receive the minutes apart from the participants?

4. Agenda:
Whom to consult preparing the agenda?
Who is responsible to distribute the agenda and invite the participants?

5. Meeting Invitation:
Goals, Agenda, Location, Date/Time, Duration, Participants.

6. Material:
Minutes of last Meeting, Proposals/Materials (printed), List of Open
Points.

7. Facilities:
Meeting room, Presentation equipment, Coffee/Drinks+Food, Accom-
modation.

64 4.4 Controlling

The initial Project Idea of-
ten takes places under some
special circumstances outside
the control of Project Manga-
ment. However, the first steps
– the subsequent Project Plan-
ning – are extremely impor-
tant to identify the feasibility
and the scope of the project.

Part IV

Project Planning and
Scheduling

65

Chapter 5

Scope and Tools of Project
Planning

5.1 Start of a new Project – the Project Plan

You are assigned to be the new Project Leader. You’ve been introduce in
the objectives of the new project, the time-frame, the budget you can spend.
Management has shown you some of the most valuable team members, the
office spaces and the IT systems currently in use for current projects (and
in parenthesis you are expected to be knowledgeable in and to use too). At
that point, you are probably knowledgeable about your duties how to realize
the Project Management Cycle (figure [5.1) for the actual project.

Figure 5.1: The Project Management Circle [46]

Depending on the assigned tasks and your experience, you may find your-

67

68 5.1 Start of a new Project – the Project Plan

self between the following extremes:

• You feel a little bit like ’Alice in Wonderland’ and you begin to realize
the difficulty of your new job.
• You can initially guess that the means, sponsors and management have

assigned to you, are fairly inadequate to finish the project as desired.

Probably it somewhere in-between and you sit together with those people
you are believe to be Stakeholders for this project and discuss the amount
of work and perhaps the organization of it.

As you know by experience, a project is nothing you can plan in detail
and in advance, since it is driven by mostly inner forces. Thus, the first
drafts) of the

• project’s tasks,
• it’s Work Breakdown Structure the it’s organization in terms of Sub

Project Leader and staffing

are undoubtedly vague and probably unrealistic.
There is still no good understanding, what efforts in term of time, labour

force, and money needs to be spend for the identified legs. In addition,
any risk assignment is still impossible. On the other side, a lot of people
expecting already right now some answers from you about the project. While
you need some time to digest your impressions, already now you are involved
in organizational items, regarding Computer Accounts, required file spaces
for project documentation, allowed absences of the project secretary, and
others.

At that point, any project has a certain amount of entropy with lots of
open bits and pieces regarding scope, organization, and time-frame. Thus,
the first step as project manager is to reduce the entropy regarding the team
members, and by the same token in your mind. In short, the first step is
to set-up a project plan . Even this very initial phase requires internal andPlanning the

Project Plan perhaps external expertise. Thus in combination with the foreseen planing
step it is necessary to dedicate man power here, as laid out in figure [5.2].

Depending on the size of the project, this initial planing phase spans
weeks or perhaps months and may involve much more man power as can
be depict from the above figure. However, depending on the progress of the
project, already some of the evaluations have already be carried out even
before the final project manager has been assigned.

Thus, in that case the PL has to execute the task and participation is
reduced to later adjustments. At the end of the initial step a Project Plan
has been established.

This initial Project Plan (or Masterplan) will be accompanied by indi-
vidual and more detailed phase plans. While the project walks through the

69

Figure 5.2: Setting up a project plan [24]

respective phases, the Project Plan is subject for subtle or more severe cor-
rections. Thus, the Project Plan has to revised by Project Management and
revisions have to be streamlined with the SPLs. The whole plan need confir-
mation by upper management and finally will be brought to attention to the
project members. Figure [5.3] shows a typical evolution of a Master Plan.

5.2 Identifying Project Dependencies and Tasks

Any current IT project has to obey a lot of dependencies:

• Internal (given by the project itself):
• project definition (functional description, deadline, quality),
• realization (team. methods),
• budget constraints (costs, ROI)
• External (the resulting outcome of the project has to be placed in the

real world):
• compatibility (interfaces),
• acceptance (customers), and or course
• competition (price, market share).

Without a good understanding of both aspects, a project runs on unde-
fined risk which may impact the project significantly. Project management

70 5.3 The Work Breakdown Approach

Figure 5.3: Evolution of the Project Plan during the project’s execution [24]

is responsible to identify at least the internal dependencies, to express them
explicitly against upper management and sponsors, and considering these in
the project plan. Figure [5.4] provides in a bird’s view the (mostly internal)
dependencies to be considered.

5.3 The Work Breakdown Approach

Once the dependencies are identified, it is time to start working on the
breakdown of tasks and to establish the Work Breakdown Structure (WBS)
based on the project’s functional and/or technical description.

The WBS is effectively a breakdown of the System Structure and allows
to

• determine and define the particular functional parts of the system,
• set-up (confined) sub-projects according to the functional parts,
• identify dependencies and required interfaces between the parts, and

perhaps
• allows to assess efforts and risks to the individual parts.

Typically, the WBS is a top-down approach starting from the general
specifications and requirements to the necessary level of detail: The struc-
tural elements.

As with most plans, the WBS will evolve during the project’s lifetime.
In particular, in the beginning, not all functional parts can be clearly be
identified. The dependencies and the compatibility of the individual struc-
tural elements have to be determined as well; typically while using a matrix
approach. For IT software projects it might be possible now to guess the

71

Figure 5.4: Internal and external dependencies of a project [24]

program structure, the interfaces, perhaps common subroutines and func-
tions and also the required program classes. In fact, IT projects typically
follow a object-oriented top down-approach. Figure [5.5] shows a top-down
approach in order to evaluate the WBS.

After the WBS has been established initially, it is necessary to define par-
ticular tasks which can be assigned to individual project members, groups,
or perhaps external providers:

• By construction, every task is self-confined and can be completed in-
dependently from each other (except for streamlining the interfaces).
• The task should be considered as ’black box’ [A → task → A’]:

– A defined input [A] is provided to the [task],
– the [task] has to react upon receipt in a deterministic manner as

defined in the corresponding use-case, and
– the [task] produces a well-defined output [A’] .

From the point of the assigned person or group, a task is a sub-project and
requires a comparable level of project management, in particular regarding
efforts, deadlines, and quality. Tasks packages can be assigned to Systems
or Subsystems within the WBS as detailed in figure [5.6].

5.4 Project Organization Structure

In parallel with the WBS breakdown, the organization structure of the
project can now be established. Now, the staff members can be organized

72 5.5 Scheduling: Assigning Deadlines and Resources to Tasks

Figure 5.5: Top down approach for setting up the Work Breakdown Structure
[24]

in groups while it is possible to estimate (at first glance) the size and the
qualification of groups according to the WBS (figure [5.7]).

As a result, not only a (final) organigram and thus the resulting reporting
chains is derived, but rather the assignment of the individual groups with
tasks becomes transparent and perhaps allows to estimate possible incom-
pleteness of tasks and staffing. This diagram shows in addition the Level of
Responsibility for the individual groups and their co-operation in the whole
project.

5.5 Scheduling: Assigning Deadlines and Resources
to Tasks

Once evaluated, the WBS provides you with the layout or your project w.r.t.
systems, subsystems, and tasks (as structural element). The top-down ap-
proach for the WBS is now complemented with a bottom-up approach to
assign

• Deadlines
• Resources

to each activity which is known as schedule management.

5.5.1 Gantt Charts 73

Figure 5.6: Assigning task packages after the breakdown of the project in a
WBS [24]

Figure 5.7: Correlation of task with organization [24]

5.5.1 Gantt Charts

This particular ’view’ is typically visualized by a Gantt chart (figure [5.8])
(named after the inventory Henry L. Gantt). Here,

74 5.5 Scheduling: Assigning Deadlines and Resources to Tasks

• the duration of the individual activities are displayed as bars which
• have a related start and end date and
• showing their (linear) dependencies.
• Steps can be combined to tasks, sections or phases.
• The level of completion or critical steps can be easily visualized.

Figure 5.8: A snapshot view of the freeware Gantt program TIMIOS [44]

Typical computer programs to provide Gantt charts techniques, allow in
addition to define

• common human resources (availability’s) and
• available budgets for the whole project,
• which can be shared among the individual activities, according to de-

finable keys (percentages).

A mathematical breakdown of those assigned numbers yields an estimate
of

• the level of completeness regarding activities, section, and phase level,
• the used resources and budgets with the same level of detail.

Regarding the very advantages of Gantt charts (in particular using ded-
icated software, like Microsoft’s Project), the disadvantages of Gantt charts
result in the facts:

• Gantt charts do not show the functional dependencies (compared to
the WBS).
• Larger projects result in very large Gantt diagrams and are hard to

read.

5.5.2 Lists 75

5.5.2 Lists

The calculation within a Gantt chart is based on a spread-sheet; just the
representation of the results follows the ’bar’ scheme, known as Gantt chart
or diagram. However, the basic calculation involved can be realized with
basic spread-sheet means, or can be expressed as chained lists. Those simple
spread sheets can be enhanced with inter-related sheets, where resources are
defined can correlated with the individual activities. Though, very easy to
use and to adopt to a project, the information here is very limited and only
suited for smaller projects (figure [5.9]).

Figure 5.9: Simple list with a hierarchical breakdown of activities and sched-
ule

5.5.3 Netplan Techniques

The Netplan technique is defined in DIN 69 904 with the following scopes:

"The netplan technique includes procedures for project plan-
ing and control. The netplan is a graphical representation of
flow-structures, in order to visualize logical and temporal depen-
dencies of activities."

There exist three types of the Netplan approach whether the activities
are describes as vectors or nodes, or whether instead of activities events are
meshed in nodes.

Figure [5.10] shows an activity node netplan. Here, one node displays
additionally resources and duration of the respective activity.

5.5.4 Critical Path Analysis (CPA)

Once we have identified the resources required to achieve or complete a
certain project task, we can gauge this task against all others. Gauging
means, we have to consider

• the respective resources required, and
• the effective dependencies
• for every task.

76 5.6 IT Project’s Phases

Figure 5.10: Sample for a Netplan with Activity-Node meshing [24]

In a well-behaving WBS, dependencies can be expressed simply as num-
ber of interfaces with respect to it’s completion schedule. Figure [5.11] lists
five milestones (10 to 50) and six activities (A to F). The ’criticality’ is
provided in term of completion time (t).

Thus the paths B+C are most critical for the project. This diagram is a
so-called PERT chart (Program Evaluation and Review Technique), whichPERT chart
is equivalent to the Netplan ’activity-vector’ approach.

As part of the risk management, PM has to have at any time a good
understanding of those tasks which are considered ’critical’ and shall watch
those very closely.

Figure 5.11: Critical Path Diagram [50]

5.6 IT Project’s Phases

Until know we have described the first step of Project Management, thus
planning the project. The planning phase can be broken into different stages:

1. Setting up a team which actually does the planning.

5.6.1 Software Development Lifecycle Model 77

2. Creating a Work Breakdown Structure which describes the functional
groups (broken down in systems, subsystems, and tasks) of the project
and allows an estimate of dependencies and required efforts.

3. Creating a Schedule which tells, when the individual task have to be
completed and in addition shows their execution dependencies.

4. Assigning Resources to the tasks in terms of man-power and budget.
At the end of this step, a Masterplan for the project has been estab-
lished which includes the above mentioned ingredients. Potentially,
already now it becomes apparent which organizational changes to the
project are essential, thus which teams need to be set-up initially and
which long-lasting SPLs need to be assigned.
What we are still lacking is

5. the determination of in particular financial resources to the project,

6. a dedicated risk management for the individual tasks.

A significant work during this Project Planning phase is to establish the
required individual plans as part of the Masterplan. Unlike the documents
provided during the Project Initialization, a fine-grained time-schedule and
a task-schedule is the outcome of the project planing.

Now, we need to turn our focus from project planning to product planning . Product Planning
and DevelopmentWe will see, that IT project management has some specific ideas how to set-

up a development and release plan in order to meet the required product
quality.

5.6.1 Software Development Lifecycle Model

Unlike general project management, IT projects – which are mainly software
– projects follow a specific approach:

Due to the imperfection of the product and a rapidly moving market and
operation conditions, software needs to follow a lifecycle model. This has SDLC
to be considered as well in the product design but additionally within the
project management.

Thus, this software lifecycle spans from the design phase (as part of
project planing),

• includes the coding (execution of the project),
• setting up a quality management for the development and product,
• the roll-out of the product and it’s
• operation and maintenance.

Different from other project, software projects can substantially sup-
ported by software itself. Dedicated tools exist to measure and improve

78 5.6 IT Project’s Phases

product quality. However, as with most projects: the better the design the
better the quality is and the faster the realization could be. Or, reversely:
A poor and/or complicated design will probably lead to a mediocre product
which requires substantial support and efforts during realization (coding/im-
plementation) and operation.

According to our today’s understanding, an IT project evolves in five
phases under responsibility and control of a dedicated IT Project Manage-
ment. Figure [5.12] explicitly makes a reference to an IT software project.

1. Initialization (Project idea)

2. Evaluation

3. Draft

4. Detailed Study

5. System design

6. Project finishing

Figure 5.12: The phases of a IT project official and alternative

Considering the construction of special tailored software, it became soon
aware that software never is delivered as expected by the sponsors:

• During the project evolution, the requirements of the software has
changed; in particular because the deficiency of the original approach
became apparent.

5.6.2 Spiral Model 79

• The functional aspects of design were not met, thus additional devel-
opment is necessary.

• The quality of the software is below expectation and during opera-
tion an uncontrolled (and perhaps unrecoverable) behaviour is been
observed (commonly referred to as ’bugs’).

Software evolves in time, which is know as Software Lifecycle Model (fig-
ure [5.13]:

Figure 5.13: Software Lifecycle Model [45]

5.6.2 Spiral Model

More complex IT projects are not just focused on software development.
Rather the project’s tasks may include:

• Adoption and configuration of standard software.
• Considerable amount of special tailored software.
• Configuration of hardware, operating system, and middleware.
• Roll-Out of hard- and software.
• Introduction of the new solution into operation.
• Customization of the current environment to include the new solution.
• Education of the technical staff to become familiar with the new sys-

tem.
• Promoting the new solution to external customers.
• Providing a full documentation for the integrated solution.

80 5.6 IT Project’s Phases

Thus, today’s IT projects require a merge of

• special software development methods and
• adopt classical project management approaches.

One way to combine both worlds is to break down the software specificMilestones
methods in a Milestone approach in a so-called (Milestone) Spiral model:

Figure 5.14: Spiral model for complex IT projects

The spiral model [5.14] is essentially a phase model and describes the
software development in cycles, while determining the four essential phases:

• Design
• Development
• Functional testing
• Operation

Important here is, that the phase changes are well determined in terms
of milestones to be achieved. Apart for development issues, the model also
includes operational aspects. The four quadrants of the spiral model indicate
in particular the basic questions needed to be raised:

• What needs to be done ?
• How do we achieve the results ?
• To what extend do meet our objectives ?

5.6.2 Spiral Model 81

• What are the relevant means ?

The milestones are additionally clearly described:

• Start is the Business Case
• Next step is the technical design document
• The build of the first (working) version, tells that coding is on it’s way
• The first alpha version will be delivered toQA, thus the product should

be mainly completed.
• Now, the software enters the usual release/development cycle
• And finally, not only the software but also the documents are in place

for production.

Unlike the WBS or the Gantt chart, the spiral model does not try to
assess the logical structure of the project, nor tries it to pinpoint the project’s
current state or resource exhaustion. Rather, it tells the Project Manager
what is in place and what is missing, independently from the WBS. In this
respect, the spiral model provides a framework for software development and
can be used as a ruler for IT project management.

82 5.7 Background, Exercises, Facts

5.7 Background, Exercises, Facts

• Task 1:
Check for your favourite Software tool/operating (commercial) soft-
ware the existence of Installation and Operating documents. How is
the maintenance of the software facilitated ?
• Task 2:

How does the current ’overall’ availability of the Internet change the
paradigm of enclosed documents and the update cycle ?
• Task 3:

Discuss this current trend in terms of high-availability software. How
does this trend potentially impact the way current software is designed
and implemented ?
• Task 4: Do some Internet research regarding ’Extreme Programming’

and compare this with the assumptions in this chapter.
• Task 5:

What is the difference between a standard ’document’ and a ’plan’?
Is a structured document already a plan?
What makes a ’plan’ a ’plan’ and what is the relationship with a
’project’?
• Task 6:

Provide a brief summary of all relevant plans to be established during
the planing phase !
• Task 7:

Consider the risk of a project.
Do some Internet research about ’Deepwater Horizon’ (http://www.
spiegel.de/thema/oelpest_im_golf_von_mexiko/).
How to estimate the “impact of a risk”?
• Task 8:

One relative new branch of statistics is the Bayes’ probability.
Could this approach help to provide a better risk measurement?

http://www.spiegel.de/thema/oelpest_im_golf_von_mexiko/
http://www.spiegel.de/thema/oelpest_im_golf_von_mexiko/

In this section, I will focus
on a description of today’s
Project Management frame-
works. While the DIN 69 000
provides us with a top down
view on Project Management

• regarding scope and def-
initions,
• the organizational struc-

tures,
• reporting channels, and
• particular tasks

become more and more de-
tailed, they are complemented
today by a new bottom up ap-
proach known as Agile Project
Management and in particular
Scrum.

Part V

Standards and Frameworks

83

Chapter 6

DIN Norm 69 000 for Project
Management

6.1 Scope of DIN 69 000

It is a good tradition in Germany to formulate standards, rule-sets, and
measurement methods in terms of the so-called ’Deutsche Industrie Norm’
DIN. One of the most famous DIN standards which caught some attention
even in the US and Japan in the 70s of the last century was the standard DIN
45 500, defining measurement and quality requirements for High Fidelity
(music) components.

Most of those national German standards are meanwhile integrated and DIN, EN, ISO
streamlined into the international standardisation scheme: The European
Norm (EN) and the Internal Standardisation Organisation (ISO); for ex-
ample the DIN 45 500 has been replaced by DIN EN 61305.

Since regulations for quality are the scope of the German standardisa-
tions, there is no surprise, that the standard DIN 69 000 (now: ISO 10006
’Guidelines for Quality Management in Project ’) discusses issues of Project
Management in six different parts:

1. DIN 69 900: Netplan Techniques

2. DIN 69 901: Project Management

3. DIN 69 902: Operating Resources

4. DIN 69 903: Costs and Activity Accounting, financial Resources

5. DIN 69 904: Project Management Systems

6. DIN 69 905: Project Operation

However, regarding IT Project Management, the standard ISO 10006 is
complemented in particular by:

85

86 6.2 Project Management according to DIN 69 901

• ISO 9001/9002: Quality Management Systems
• ISO 10007: Guidelines for Configuration Management
• ISO 10012: Measuring Management Systems
• ISO 19011: Auditing Guidelines for Quality Management Systems

Thus, the main scope of ISO’s Project Management standards defines
the requirements and means of a quality process.

n particular it focuses on an effective project controlling, which is disen-
tangled from project management.

6.2 Project Management according to DIN 69 901

The standard DIN 69 901 simply introduces in item 2 the definition of a
project, project management, and project operation. Additionally, it pro-
vides in item 3 descriptive terms for the project organisation, in particular
the reporting structures. Further, the structural elements of project tasks
are laid out. Here, DIN 69 901 introduces ’Projektstrukurplan’ PSP (fig-
ure [6.1]) as equivalent to the Work Breakdown Structure WBS of PMI’sPSP
PMBoK.

The PSP can be laid out in accordance to

• the logical structure (’Aufbaustruktur’),
• the schedule of the tasks (’Ablaufstruktur’, ’Netzplan’),
• the existing or chosen organisational structure (’Grundstruktur’, ’Wahlstruk-

tur’), and perhaps
• any mixed structure of the project.

Figure 6.1: The ’Projektstrukturplan’ according to DIN 69000

Item 4 introduces the terminology about project organisation, project
management, and the rôle of the sub project leader (’Fachprojektleiter ’).

Finally, item 5 describes the necessary terms for project governance:Governance

87

• Goal of the project,
• definition of the project,
• product specification,
• project information (system), report, final report, project documenta-

tion,
• limits, and
• completion ratio.

Of course, one might expect that now the often used German terms Pflichtenheft,
Lastenheft

• ’Lastenheft’ (requirement specification) and
• ’Pflichtenheft’ (technical specification)

would have been explained. However, this is suspended and finally de-
fined in DIN 69 905. The ’Lastenheft’ and ’Pflichtenheft’ identify the at-
tributes of the project’s subject: the product.

The commercial conditions among the involved parties needs to be addi-
tionally specified in a

• ’Projektvertrag’ (contract specifications)

detailing the costs and pricing schemes, penalties and procedures which
are related to the project itself.

6.3 Operating a Project (DIN 69 905)

According to my understanding, DIN 69 905 introduces explanations for two
separate PM issues, which can be categorizes as mainly

• commercial aspect and
• specific project aspects.

While DIN 69 905 provides a specific view on the project (internal) ter-
minology, which is complementary to the PRINCE2 or the PMBoK ap-
proach, the introduced commercial framework is of great importance, since Commercial

frameworkit’s impact is often underestimated.

• Bidding:
Typically, the commercial life-cycle of a project initiated by the Sponsor
(Auftraggeber) starts with a Offer (Angebot) which shall include a
List of Requirements (Anforderungskatalog) mandatory for the actual
project. However,

• makes no clear distinction between

– Request for Information RFI

88 6.3 Operating a Project (DIN 69 905)

– Request for Tender RFT
– Request for Quotation RFQ
– Request for Proposal RFQ

In case, the Sponsor and the Tender are already coupled by some con-
tract, the Sponser may issue directly a RFP. Otherwise several Tenders may
submit their Proposal during the (well determined) Bidding period. The
Sponsor will finally make an Appointment (Zuschlag) and will chose a spe-
cific Tender to realise the project and release a commercially binding Order
(Bestellung).

• Contracting:
At that point, Sponsor and Contractor define the particular conditions
of the project. Here, two major documents need attention:

– The Contract Specification (Lastenheft) details the set of requirementsLastenheft
of the Sponsor regarding the Deliveries (Lieferungen) and the
Attainments (Leistungen) of the Contractor during the contract
phase.

– The Functional Specification (Pflichtenheft) includes the ProposalPflichtenheft
of the Contractor, how to realise (in schedule and quality) the
contract conditions as laid down in the Contract Specification.

• Execution:
DIN 69 905 provides a rich set of project management terms, includ-
ing Project Organisation, Project Management Systems/Tools, Risk
management, and many others.
• Suspension:

A project could conditionally brought on hold by the Sponsor; thus
it may be suspended for a while (Sistierung). This condition should
be included in the project Contract, because it will certainly produce
additional costs for the Contractor.
• Acceptance:

The project as a whole or in parts can be Commissioned by the Con-
tractor and Delivered to the Sponsor. It is the duty of the Sponsor
to start a (defined) Approval Process and upon success, to notify the
Acceptance of the Delivery (Approval Report) which requires mutual
consensus. The Sponsor may also only partly express Acceptance, or
– if things go badly – Refrain Acceptance.
• Warranty:
DIN 69 905 considers the Warranty (Gewährleistungsphase) as partic-
ular project phase. During this phase, the Contractor has the obliga-
tion to provide additional warranty services, which may be additionally
charged.
Distinct from the Warranty is Accommodation (Kulanz), which may

89

include unsolicited (freiwillige) services by the Contractor; whether
charged or uncharged.

• Closure:
The project ends with it’s formal Closure. Mandatory is a project
Closure Report. A Closure will either happen in case the project is
successfully finished, or it is conditionally or unconditionally cancelled.

6.4 Budgeting Projects and Controlling Costs

The standard DIN 69 903 provides the terminology to

• provide a budgeting of a project (financial sources)
• allow the control of costs of the project (financial sinks).

The flow of the financial means (the Expenditure) during the project’s
execution can be best controlled by means of a cost planing and a particular Cost Breakdown

StructureCost Breakdown Structure (Kostenstrukturplan). The effective costs have to
be balanced by the project’s Attainments, thus both need to be gauged for
a specific Working Package or Task, which is will typically accomplished by
the Project Controlling (figure [6.2]).

Figure 6.2: Elements of Budget Planing and Cost Control

6.5 Project Management Systems

The standard DIN 69 904 tries to lay out the qualifications of a Project
Management System in terms of a raw model. The main requirements of a
PM System are (figure [6.3]): PMS

• Flexibility – the PM Systems need to be adoptable for new or changing
conditions.

• Universality – the system should support different usage conditions.
• Modularity – the system is constructed out of several subsystems to be

used as a toolbox.

90 6.6 Netplan Techniques

• Compatibility – the subsystems provide standardised interfaces to allow
a systematical aggregation of functions.
• Transparency – the systems allows to visualise the structure and the

dependency of the project and it’s tasks.
• Prevention – the system support the approach ’prevention instead of

reaction’.

Figure 6.3: Bird’s view of the structures and processes supported by a PM
System

WithinDIN 69 904 the elements of project management are mentioned.
PM elements are assigned specific functions of a Project Management System
and can be used as a toolbox.

6.6 Netplan Techniques

The Netplan Technique introduces a schematical/graphical view of the project
with respect to its tasks, dependencies, and schedule. Unlike the Gantt ap-
proach, it provides a vectorized presentation and allows a multi-level depen-
dence of tasks. Similar to the Critical Path Analysis CPA the timelines can
be visualized and the criticality can be determined.

Essentially, Netplan consists of

• tasks or events, represented as rectangle or circle,

91

• activities (displayed as arrows), attached to tasks and events,
• logical junctions of activities, and perhaps
• additional hints linked to tasks and/or activities.

The strength of Netplan originates from the set of coherent attributes
assigned to tasks and activities. Thus, it is possible to clearly follow the
project’s flow.

Beginning and ending task are visualised as specifically. The drawings
of a Netplan may become complex and in particular large. Therefore, it is
possible to split the drawing on individual pages while clearly assigning the
relationships in terms of successor and predecessor.

6.7 Project Controlling

One of the most important implicit impacts for Project Management orig-
inating from DIN 69 000 is to focus on Project Controlling. One of the
lessons learned from Cologne’s Subway construction disaster, is the missing
controlling of the Sponsor.

Typically, it is task of the Project Management to achieve controlling on
there on behalf. However large or ’Multiprojects’ require an additional level
of Project Controlling, since individual decisions within a sub-project might
influence the whole project substantially.

Thus we can identify Controlling with respect to the following tasks (fig-
ure [6.4]):

• Operative Controlling
• Financial Controlling
• Systemic Controlling

Controlling is a shared task between the Contractor and the Sponsor. For Controlling =
shared tasklarge project it might the feasible to assign a third party to be responsible

for Project Controlling.

92 6.7 Project Controlling

Figure 6.4: Shared responsibility for Project Controlling [4]

Chapter 7

PRINCE2 – Projects in
Controlled Environments

From the discussion of the former chapter, we have seen that projects can
be subdivided into several legs, or using the PRINCE2 terminology stages,
generally understood as project life cycle:

• Project Specification and Design
• Project Execution (IT: Development/Coding + Testing)
• Project Roll-Out (IT: Release Management, Operation support)

The British PM de-facto standard PRINCE2 actually widens this view
and complements it with the product life cycle:

• Product Initiation: Idea, Trigger, Feasibility
• Product Design: Study, Layout
• Product Realisation: Implementation
• Product Operation: Use the Product
• Product Termination: Scrap the Product

I will now introduce the PRINCE2 framework and to identify it’s specifics
for Project Management.

7.1 Origin and Scope of PRINCE2

PRINCE has been developed as project management method in 1989 by CCTA
the British Central Computer and Technology Agency (CCTA). The cur-
rent PRINCE standard was published in 1996 as book ’Managing Successful
Projects with PRINCE2’. PRINCE2 official home-page is hosted by the OGC
Office of Government Commerce (OGC).

In order to fully apply PRINCE2 for IT Project Management, the or-
ganisation running the project should follow the ITIL (IT Infrastructure ITIL

93

94 7.1 Origin and Scope of PRINCE2

Library) approach, also defined and provided the OGC.
According the it’s home-page, PRINCE2 has the following scope:

"PRINCE2 is a process approach to project management, fitting
each process into a framework of essential components which need
to be applied throughout the project. PRINCE2 helps you work
out what roles should be involved in your projects, what they will
be responsible for and when they are likely to be needed. The
set of processes and controls provided give you the structure that
will support the life of the project, and explains what information
you should be gathering along the way. The PRINCE2 method
demonstrates how your project can be divided into manageable
chunks or stages, allowing you to plan ahead more realistically,
and to call on your resources at the time they are most needed."
"PRINCE2 acts as a common language between all of customers,
users and suppliers, bringing these parties together on the Project
Board. And although PRINCE2 doesn’t include contract man-
agement as such, it provides the necessary controls and bound-
aries needed for everybody to work together within the limits of
any relevant contracts. In addition, the Project Board provides
support to the project manager in making key decisions."

In addition, the OGC tries to convince potential users of PRINCE2 by
declaring the following benefits:

"PRINCE2’s formal recognition of responsibilities within a project,
together with its focus on what a project is to deliver (the why,
when and for whom) provides your organisation’s projects with:

• A common, consistent approach
• A controlled and organised start, middle and end
• Regular reviews of progress against plan
• Assurance that the project continues to have a business jus-

tification
• Flexible decision points
• Management control of any deviations from the plan
• The involvement of management and stakeholders at the

right time and place during the project
• Good communication channels between the project, project

management, and the rest of the organisation
• A means of capturing and sharing lessons learned
• A route to increasing the project management skills and

competences of the organisation’s staff at all levels."

In other words, PRINCE2 tries to ’glue’ the different participants of a
project and focuses on a common understanding ([7.1]) about the state of
the project, while the actual communication can be standardized with pre-
defined to-do lists and reports.

95

Figure 7.1: PRINCE relationship with projects and business [31]

7.2 The PRINCE2 Management Components

PRINCE2 subdivides management into eight distinct disciplines as shown in
figure [7.2]:

Figure 7.2: PRINCE2 Management disciplines [31]

A key understanding of the PRINCE2 approach is, that the disciplines PMP
deliver Project Management Products (PMP) to each other. Each PMP is
identified, defined, and the delivery is controlled. The corresponding process
flow, regarding responsibilities, decision-making, and support requirements
are essential part of the PRINCE2 framework. In this sense, PRINCE2
sees itself as product-based planning technique. Since Quality Management
is an essential part, it is believed that any Management Product (but not
necessarily the final ’product’ of the project) possesses an intrinsic quality.

96 7.2 The PRINCE2 Management Components

7.2.1 Organisation

The Project Organisation (PO) describes in the PRINCE2 approach a Cus-
tomer/Supplier relationship, independent whether they are part of the sameCustomer/

Supplier organisation or not:

• The Customer will define the project’s outcome and it’s quality, while
• the Supplier provides the resources and skills to generate the outcome.

The PO has to be established independently from the ’line operation’
and is instantiated over the project’s lifetime. The generic project rôles for
PRINCE2 defining the management responsibilities can be picked up from
figure [7.3]:

Figure 7.3: PRINCE2 Project Management structure [31]

Within this model, four management layers are defined :

• Direction of the project (Supervision)
• Day-to-day management of the project (Execution)
• Team Management (Staff)
• Team Members (work force)

The first three layers define the PRINCE Project Management Team.Project
Management Team Since PRINCE2 employs a Customer/Supplier relationship model, it’s man-

ifestation is facilitated in a ’Project Board ’ (figure [7.4]) as joint forum:
Complex projects may be grouped together in a Programme. PRINCE2

defines a Programme as:

"A portfolio of projects selected, planned and managed in a
co-ordinated way and which together achieve a set of defined
business objectives. Programme management methods and tech-
niques may also be applied to a set of otherwise unrelated projects
bounded by a business cycle.’"

Programmes may require additional support structures resulting in the
following comprehensive PO structure [7.5]:

7.2.2 Plans 97

Figure 7.4: Customer/Supplier Project Management Organisation [31]

Figure 7.5: Programme Organisation [31]

7.2.2 Plans

In the PRINCE2 framework, a plan is a structured document, describing

• how,
• when, and
• by whom

a specific target or sets of targets are achieved, including time-scales,
costs, and quality for a deliverable and need approval and commitment by Approval
the Project Management Team and additional approval by the Project Board.

Plans are presented as management reports. While the format of a plan Plan components
(ie. item-lists, charts, diagrams) are essentially free to chose, the plan should
include the following components (figure 42):

• Produced products (deliverables)

98 7.2 The PRINCE2 Management Components

• Activities to create deliverables
• Activities to validate the deliverable’s quality
• Required resources and time for the above activities, staffing and skills
• Dependencies between activities
• External dependencies regarding information, products, and/or ser-

vices needed
• Time schedule for the activities
• Monitoring points for the activities’ progress

Typically, a Stage Plan includes a Summary Plan for the Project Board
an a Detail Plan for control and daily work [7.6].

Figure 7.6: Components of a Plan [31]

If several projects are organised in a Programme, plans have to be carried
out at different levels of the project as shown in figure [7.7]:

Figure 7.7: PRINCE2 Plan Level [31]

7.2.3 Controls 99

7.2.3 Controls

Controlling in the PRINCE2 framework means essentially to

• ensure that the project generates a product which meets the defined
acceptance criteria

• ensures, that the project progress happens in time and within the re-
source and costs limits

• allow the project to be viable against the Business Case.

According to the layered management model, Control is responsible to
the upper level, in order

• to monitor progress,
• compare the achievements with the plan,
• reviewing the plans,
• detect problems,
• initiate corrective actions,
• authorise additional work.

The PRINCE2 ’control loop’ approach follows essentially the Deming Cy- Deming Cycle
cle Plan → Do → Check → Act. The results of the major control points
are important for Project Board in order to support the following decisions:

• Project Initiation
Should the project be started?

• End Stage Assessment
Has the stage been successfully completed?
Is the Business Case still valid? Risks under control?

• Highlight Reports
Regular progress reports

• Exception Reports
Early warnings in case of problems and new substantial risks.

• Mid Stage Assessment
Standard correction actions in case of forecast deviation.

• Project Closure
Project finished as expected?
Follow-on actions?
Lessons-learned sessions?

7.2.4 Stages

PRINCE2 defines a stage as ’a collection of activities and products whose
delivery is managed as a unit’ and is effectively a ’unit of work’ carried out
by the project team. In this respect, a stage is a partition of the project, Stages versus

Phasesunlike a phase which characterises a partition of the product life cycle.
Stage are an indispensable part of any project, since they allow to

100 7.2 The PRINCE2 Management Components

• define the decision and review points
• adjust the precision of the forthcoming planning, and to
• improve scalability of the project.

Two distinct understandings of stages are possible in the same project:

• Technical stages are defined by a particular technical (production)
method involved.
• Management stages identify intervals, which include commitments of

resources and authority to spend.

PRINCE2 typically uses ’Management stages’ for planning and control
(figure [7.8]) which may include different technical stages:

Figure 7.8: Breakdown of technical stages (A-H) wrt. management stages (1
to 4)

7.2.5 Management of Risk

PRINCE2 defines as risk as

"The chance of exposure to the adverse consequences of future
events".

and treats risks a major factor to be considered in the management of a
project.

From the point of PRINCE2, risks can be categorised mainly into two
types:

1. Business risksBusiness Risks
like validity and viability of the Business Case, alignment with future
business strategies, political and legislative changes/requirements and
environmental issues, customer acceptance and others.

7.2.6 Quality in a Project Environment 101

2. Project risks Project Risks
supplier issues regarding third party components, organisational and
inter-human factors, project-special issues including it’s complexity
and challenge.

Risk management is the responsibility of the Project Board and the
Project Manager. In general, risk management follows a detailed risk anal-
ysis. Since risks can not be avoided, in case they happen, their impact has
to be reduced as shown in figure [7.9].

Figure 7.9: Duties of Managers for Risk Management [31]

Risk management has to happen continuously in the project as part of
the general reporting procedures (figure [7.10]).

7.2.6 Quality in a Project Environment

PRINCE2 picks up the quality definition from ISO 8402

"Quality is the totality of characteristics of an entity which bear
on its ability to satisfy stated and implied needs."

and requires the following Quality Management elements:

• Quality System QS
This is an organisation structure, the procedures and processes to im-
plement quality management, either provided by the supplier or by the
customer or both.

• Quality Assurance QA
An organisational unit setting up the QS, operating, auditing and
maintaining it. QA can be realised within the project team or outside,
e.g. commonly used in a programme.

• Quality Planing QP
Here, the objectives, requirements, and actions for the QS are defined.
In the Project Initiation Document is should be explicitly provided as
Project Quality Plan.
• Quality Control QC

Defines the process of controlling, i.e. examining a product whether it
meets the defined quality objectives.

102 7.2 The PRINCE2 Management Components

Figure 7.10: Risk flow and key points for management intervention [31]

A particular Quality Management System is defined in ISO 9001 . ThoughISO 9001
conformance with this standard can not be guaranteed by PRINCE2, run-
ning projects with the PRINCE2 method, with the path to quality as defined
in figure [7.11], certainly support these requirements.

7.2.7 Configuration Management

Within the scope of PRINCE2, Configuration Management has to take about
all the project’s deliverables and the documentation, thus it has to identify,
track, and protect the project’s products and the responsibility of a Librar-
ian.Project Library

Configuration Management consists of the basic functions:

• PlanningPlanning
Defining the level of coverage for Configuration Management and how
it can be achieved.
• IdentificationIdentification

7.2.8 Change Control 103

Figure 7.11: PRINCE2 path to Quality [31]

Detailing the components which are subject for Configuration Man-
agement.
• Control Control

Ability to freeze a state of a product. After a freeze a certain authori-
sation is required to change the product.

• Status Accounting Status Accounting
Records the status of the products.

• Verification Verification
Reviewing the actual state of a product wrt. the Configuration Man-
agement records.

In summary, PRINCE2 Configuration Management is comparable the
same module in ITIL, however is specifically adopted to project manage-
ment.

7.2.8 Change Control

Change Control within PRINCE2 has the following two main tasks:

104 7.3 PRINCE2 Processes

Defining the level of Authority required to approve a particular change
in the product. Verifying the Integrity of a Change: Conformance with the
Business Case and whether it is beneficial. File a Risk Log. Considering
the balance of time/cost/risk wrt. the foreseen change. Change Control
and Configuration Management depend on each other, and it should use the
established Configuration Management tools.

7.3 PRINCE2 Processes

7.3.1 Process Model

PRINCE2 defines eight major processes (figure [7.12]), including each a col-
lection of sub-processes (figure 7.13]):

• Starting up a ProjectSU
Gathering basic information
• Initiating a ProjectIP

Getting agreement that we know what we are doing
• Controlling a Stage and Managing Product DeliveryCS

Controlling development
• Managing Stage BoundariesSB

Taking stock and getting ready for the next part of the project
• PlanningPL

Common planning steps
• Directing a ProjectDP

Senior management taking decisions at key points of the project
• Closing a ProjectCP

Making sure the project has done the job

7.3.2 Starting up a Project (SU)

The Start Up of a Project has to be accompanied by the processes (figureStart Up
[7.14]):

• Business Plan the determination of the basic business requirements
triggering the project
• Project Board the identification of responsibilities, thus establishing

the Project Board, and appointing the Project Manager (SU1)
• Project Management Team Design designing the project management

team under consideration of the concerned parties (SU2)
• Appointing Project Manager Team the appointment of the PM team

members (SU3)

7.3.2 Starting up a Project (SU) 105

Figure 7.12: PRINCE2 processes structure [31]

Figure 7.13: Sub-processes for the PRINCE2 main processes [31]

• Project Brief the knowledge of certain base information about the com-
missioning of the project (SU4)

• Project Approach the definition of the project Approach (SU5)
• Initial Stage Plan the creation of an Initial Stage Plan to enter the

Initiation stage (SU6).

An important issue is also the Scalability of the project and thus in what
context (Programme) it runs.

106 7.3 PRINCE2 Processes

Figure 7.14: Starting Up Processes and Subprocesses [31]

7.3.3 Initiating a Project (IP)

Any successful project is determined by it’s start and estimated end. The
project’s objectives and in particular the Business should be clearly under-
stood by all participants. The solution path and the responsibilities should
be determined in the first place.

Under these conditions, PRINCE2 defines the following subprocesses while
Initiating a Project (figure [7.15]):

• Planning QualityIP1
• Planning a ProjectIP2

major products, activities, and risks; estimate efforts and resources
needed; determine timescale
• Refining the Business Case and RisksIP3
• Setting up Project ControlIP4
• Setting up Project FilesIP5
• Assembling a Project Initialisation DocumentIP6

7.3.4 Directing a Project (DP)

The entitled project management has the authority to

• define the requirements for the project
• authorising funds
• committing resources
• make decisions on any changes requested by Project Management
• make decisions on exception situations

7.3.4 Directing a Project (DP) 107

Figure 7.15: Initiating a Project [31]

• communicating with external stakeholders.

Directing a Project includes the following ([7.16]):

• Authorising Initiation DP1
• Authorising a Project DP2
• Authorising a Stage or Exception Plan DP3
• Providing Ad hod Direction DP4
• Confirming Project Closure DP5

Figure 7.16: Directing a Project [31]

108 7.3 PRINCE2 Processes

7.3.5 Controlling a Stage (CS)

Controlling a Stage is the most fundamental discipline for the actual exe-
cution of Project Management. At the end of every stage, a ’delivery’ is
assumed. In order to successfully provide this, management must focus it’s
attention

• on the realisation of the delivery or outcome,
• the used resources from the beginning to the end of the stage
• apply risk control
• keep the stage aligned with the Business Case and to
• monitor deviations from the initial plan (loss of focus).

The following sub processes are essential Controlling a Stage (figure
[7.17]):

• Authorising Work PackagesCS1
• Assessing ProgressCS2
• Capturing Project IssuesCS3
• Examining Project IssuesCS4
• Reviewing Stage StatusCS5
• Reporting HighlightsCS6
• Taking Corrective ActionsCS7
• Escalating Project IssuesCS8
• Receiving Completed Work PackageCS9

7.3.6 Managing Product Delivery (MP)

Managing Product Delivery has two directions:

• Third Party Products may be needed to be incorporated into the
Project.
• The (Sub-)Project has to deliver Products (defined as Work Package)

to the Project or the Programme for Integration.

In the last case, it is the responsibility of the Team Manager to ensure,
that planned Products are created and delivered by the team to the Project.

In order to streamline the delivery, the following sub processes are re-
quired ([7.18]):

• Accepting a Work PackageMP1
• Executing a Work PackageMP2
• Delivering a Work PackageMP3

7.3.7 Managing Stage Boundaries (SB) 109

Figure 7.17: Controlling a Stage [31]

Figure 7.18: Managing Product Delivery [31]

7.3.7 Managing Stage Boundaries (SB)

Transitions between stages happen regularly during the progress of the project.
The process Managing Stage Boundaries has the tasks (figure [7.19])

• to assure the Project Board that all Products in the current Stage Plan
have been completed
• to provide information to the Project Board to assess the continuing

viability of the project
• obtain authorisation to start the next state
• record ’lesson-learned’ information for later stages
• to update the relevant Project documents

110 7.3 PRINCE2 Processes

• to provide a Stage End Report and perhaps to
• set-up an Exception Plan.

Figure 7.19: Managing Stage Boundaries [31]

7.3.8 Closing a Project (CP)

Once the Project is finally realised, it has be gracefully closed. Closing a
Project is the respective process within PRINCE2 (figure [7.20]):

7.3.9 Planning (PL)

Planning is a common (sub-)process required by

• Planning an Initiation StageSU6
• Planning a ProjectIP2
• Planning a StageSB1
• Producing an Exception PlanSB6

Any plan has to include the following steps:

1. Establishing what products are needed

2. Describe products according and assign quality requirements

3. Determining the sequence order for products and their dependencies

7.3.9 Planning (PL) 111

Figure 7.20: Closing A Project [31]

4. Check, when activities should be done and from whom

5. Estimate the amount of effort for each activity and the duration

6. Agreeing on Quality Control and the required resources

7. Calculate overall costs and efforts and make a budget forecast

8. Assessing risks

9. Identify management control points

Planning can subdivided into the following subprocesses (figure 57):

• Designing a Plan PL1
• Defining and Analysing Products PL2
• Identifying Activities and Dependencies PL3
• Estimating PL4
• Scheduling PL5
• Analysing Risks PL6
• Completing a Plan PL7

112 7.4 PRINCE2 – 2009

7.4 PRINCE2 – 2009

In the late summer 2009 finally a new version of PRINCE2 (not PRINCE3!)
will be brought out by the OGC. Scope of the new approach is to make
PRINCE2 more flexible w.r.t. the requirements of the actual project. Within
the new issue sub processes are not mandatory any more, additionally check-
lists are provided and case studies are included. One further approach is, to
align PRINCE2 with the new ITILv3 standard.

However the basic ingredients of PRINCE2 are kept and become more
explicit:

7 Principles:

1. Continued Business Justification

2. Learn by Experience

3. Define Roles

4. Manage by Stages

5. Manage by Exception

6. Focus on Products

7. Tailor to suite the Environment

7 Themes (aka Components):

1. Business Case

2. Organisation

3. Quality

4. Planes (Project, Phase, Team)

5. Changes

6. Risks

7. Progress

6 Processes (unchanged):

1. Starting a Project

2. Initiating a Project

3. Controlling a Stage

4. Managing Stage Boundaries

5. Directing a Project

6. Closing a Project

Chapter 8

Project Management Body of
Knowledge

Since several years, the Project Management Institute (PMI) offers a knowledge-
based Project Management method condensed in the Project Management
Body of Knowledge (PMBoK). Certificates can be achieved and yielding a
Project Management Professional (PM) . Here, I can only give a brief intro- PMI
duction into the approaches of the PMBoK.

8.1 Project Management Knowledge Realms

The PMBoK itself defines a standard for Project Management, including the
description of tools and methods like theWork Breakdown Structure (WBS),
Critical Path Analysis (CPA), which have been commonly accepted to be
effective for Project Management. However for a successful project, the
PM Team has to have knowledge about five different realms, including the
PMBoK itself (figure [8.1])

• Project Management know-how according to the PMBoK

– Definition of the Project Life Cycle-
– Five PM Process Groups.
– The nine Project Management Disciplines.

• Knowledge about the Standards and Rules regarding the subject of
project (a product or a service) and how it will be applied.

– Supporting infrastructure, e.g. lawyers, organisation of produc-
tion and delivery, marketing, logistics, Human Resources.

– Technical know-how, regarding production methods, Software de-
velopment, engineering standards for the particular subject.

– Specific know how in case of business-to-government relationships.

113

114 8.1 Project Management Knowledge Realms

Figure 8.1: Project Management Knowledge Realms [21]

– Know-how about the particular industry branch (automotive, avi-
ation, pharmacy, financial services).

• Knowledge about the Project Environment.

– The project’s cultural and social environment and dependencies
in order to build a successful project team.

– International and political implications, eg. working hours, holi-
days, timezones.

– Physical conditions for the project, office rooms, environmental
considerations.

• Knowledge and Skills about General Project Management.
• Skills to Work and Communicate with people (inter-human abilities).

The PMBoK gives an outline of the five PM Process Group:Groups

1. Initialisation

2. Planing

3. Execution

4. Control+Steering

5. Termination

Further, PMBoK introduces nine PM DisciplinesDisciplines

1. Integration Management,

115

Figure 8.2: PMBoK Process Groups and PM Disciplines [21]

2. Scope Management,

3. Time Management,

4. Cost Management,

5. Quality Management,

6. Human Resource Management,

7. Communications Management,

8. Risk Management, and

9. Procurement Management

which will be discussed very condensed in the next sections. Figure
59 provides a bird’s view of the process groups and PM disciplines. Like
PRINCE2, the PMI defines a process (as part of a process group) to be
dynamic and has to be optimised according to the Deming Cycle [8.3] (Plan
→ Do → Check → Act).

The finale result of the Project’s subject is a Product, a Delivery, or
perhaps a Service. Thus, the responsibility of the Project Management is to
shape all processes required to derive to subject and to deliver all ingredients
in time and in quality.

116 8.2 Project and Product Life Cycle

Figure 8.3: The Deming Cycle’s road to quality

8.2 Project and Product Life Cycle

PMBoK differentiates between the Project Life Cycle and the Product Life
Cycle. The Project Life Cycle is broken down in phases, and the correspond-
ing processes are grouped together in Process Groups (figure [8.4]).

How the Project Life Cycle is structured, depends on the project’s sub-Project Life Cycle
ject, of course but are typically organised sequentially. In PMBoK’s termi-
nology, Milestones are called PM Output Values and are pre-defined (figure
[8.4]). Initially, the Project Manager has not only to determine the work
packages (the tasks) for the project which is required for any resource plan-
ning, but rather has assign risks and costs too.

Figure 8.4: Project and PMBoK Process Groups and PM Disciplines [21]

117

8.3 Project Management Processes and Process Groups

According to the PMBoK, Project Management is "applying knowledge,
skills, tools and methods to fulfil the project’s requirements." Project man-
agement is realised by a shaped and controlled processes, which uses input
values and on return produce output values.

One particular output values are commonly referred to as Milestones
(figure [8.4]), however PMBoK has a very generic approach to processes Milestones
(figure [8.5]) and introduces specific diagrams and a workflow to couple the
individual PM processes. For every PM process PMBoK defines line-by-line

• a list of necessary Input Values and

• a set of expected Output Values.

Figure 8.5: PMBoK’s Process Diagram

The actual process is considered as event. The process is fed from the Evens
input values and generates finally the output values. Typically, processes are
repetitious, thus they don’t occur just once but rather more often. In this
case, every process is subject of standardized process improvement, which
commonly is known as ’Deming Cyce’ (figure 59). It is one essential task Deming Cycle
of PM to stoke this process improvement cycle and thus to achieve constant
process improvements. Processes are grouped together by Process Groups
(PG) which are shown in figure [8.6]:

We can consider

• Initialisation,

• Termination

as none-recurring Project Management Groups, where typically every pro-
cess is only executed once, while within

• Planning and

• Execution

PG (sets of) processes are run often. Further, the Control and Steering PG
can be understood as ’meta’ Process Group (figure [8.7]).

118 8.3 Project Management Processes and Process Groups

Figure 8.6: PMBoK’s Process Groups and their interrelationships →

8.3.1 Initialisation

The processes during the PG Initialisation are limited, but rather important,
as can be seen be the following subjects:

Development of the Mission statement for the project and how to achieve
the project’s approval. Defining the project’s brief, providing information
about content and volume of the project.

8.3.2 Planning

During the PG Planning, the following processes have to realised:

Development of a Project Management Plan

This defines, how the PM is set-up for the current project:

• Planning the Project’s Content and Volume providing an estimateProject’s Content
and Volume about the size of the project and the required resources.

• Definition of the Content Volume , on the other side, details the deliv-Content Volume &
Deliverables erables.

• Setting up the Work Breakdown Structure (WBS)WBS

8.3.2 Planning 119

Figure 8.7: Project Management Groups and process shaping

• Splitting the deliverable into small sets of packages , in order to make Packages
them more manageable.

• Definition of Tasks builds up the logic to deliver and couple and indi- Tasks
vidual packages.

• Determination of Task Orders considering and describing the depen- Task Orders
dencies between the packages.

• Estimation of Resources of individual tasks and process steps. Resources

• Estimation of Duration for the individual tasks. Duration

• Determining the elements for the Schedule of the tasks including order, Schedule
duration and required resources.

• First breakdown and guess of costs individual steps. Cost Planning

• Cost planning, while summing up the costs for logical groups and esti-
mating to total project costs.

• Planning the Quality requirements for the project. Quality

• Determining the Staffing and Reporting structures. Staffing &
Reporting• Planning the Communication chains.
Communication• Setting up a Risk planning .
Risk Planning

– Identifying the risks of the project.
– Provide a Risk analysis based on an probability and impact.
– Numerical Risk analysis.
– Planning the Risk management.
– Planning Risk recovery activities/requirements.

• Planning Suppliers and Ordering. Suppliers &
Ordering• Setting up Contract Planning.
Contract Planning

120 8.3 Project Management Processes and Process Groups

8.3.3 Project Execution

In the PG Execution, many recurring processes take place. In particular, we
have the standard processes (figure [8.8]):

• Steering and Management of project Execution
• Realisation of Quality Management.
• Setting up Project Teams
• Continuously developing Project Teams
• Distribution of Information, in particular towards the project’s Stake-

holder.
• Requesting potential Suppliers and finally
• Chose the Suppliers and set-up contracts with those.

Figure 8.8: Processes in the Project Group Execution [21]

8.3.4 Control+Steering

Processes in the Control+Steering PG are set-up in order to watch and report
activities in other processes, to identify potential problems and to allow
corrective actions. In addition, all processes during the project’s execution
have to be compared against the original planning, and the plans have to be
adjusted to the identified needs (figure [8.9]).

In particular the following processes need to be considered:

• Supervision and Steering of the project work including Time Sheets
control, evaluating trends, improving processes and preparing status
and progress reports.
• Integrated Change Management filling and approving Changes and val-

idating their result.

8.3.5 Termination 121

Figure 8.9: Elements of the Process Group Control+Steering [21]

• Verification Content and Volume allowing the final Acceptance of the
project’s deliveries.

• Steering of Content and Volume which may be required if changes in
any of both aspects are necessary.
• Management the Schedules and Time Tables, thus any changes can be

included in a coordinated manner.
• Steering the Costs means to spot additional costs and to adjust the

budget planning.
• Supervision of Quality Management is to measure the achieved quality

and to provide means to improve those and/or set up corrective actions.
• Managing the Project Team includes co-ordination, supervision and

other tasks to improve the efficiency of the team.
• Progress Reports are required to identify the current state of the project,

to provide an estimate of progress and perhaps a trend.
• Stakeholder Management is for informing the Stakeholders about the Stakeholder

Managementcurrent project situation and to pick up their demands and perhaps
including those into the project.

8.3.5 Termination

During the Termination Process Group, the project will be firmly finished
and all ongoing processes are terminated. Here, only two processes are rele-
vant

• Termination of the Project including the final documentation of the
project, which is required to

122 8.4 Project Management Disciplines: The know-how Groups

• Close all Pending Contracts due to the achieved approvals.

8.4 Project Management Disciplines: The know-
how Groups

The PMBoK refers to sets of documents which are important for any project:

• Project Mission Statement : Includes the formal approval of the project.
• Project Brief : Including the project’s content and volume and specific

consideration of the tasks and the products/deliveries.
• Project Management Plan:

Description of the individual steps of the project and how they will be
realised and including:
• Plan for Content and Volume Management.
• Schedule Management.
• Cost Management.
• Quality Management.
• Team Management.
• Communication Management.
• Risk Management.
• Order and Demand Management.

8.4.1 Integration Management

The Integration Management is responsible to integrate the different ele-
ments of project management, which are located in different Process Man-
agement Groups (PG). Specifically it’s tasks are:

• Developing the Project mission statement,
• developing the preliminary definition of project content and volume

(Project Brief)
• development of the Project Management Plan,
• steering and co-ordination of the project execution,
• controlling and management of the individual project tasks while
• integrating Change Management and termination of the project.

The Integration Management is thus responsible to set up the projects
management framework. In particular, here decisions have to be carried out,
about the specific means and tools for Project Management, for instance a
dedicated Project Management System. Often it is required to ask for exter-
nal support, perhaps from inside the existing organisation or from outside
by skilled and experienced consulters.

The main papers and proposals are the

8.4.1 Integration Management 123

• Preliminary definition of the project’s content and volume, including Project Content
and Volume

– project and product goals in the context of the demand, stan-
dards, usage, and restrictions

– specification of the resulting product or service and the required
level of (formal) approval,

– initial project organisation, risks, and estimated costs,
– time-line and milestones with a first WBS,
– requirements for Communication and Quality Management,
– reporting chains and approval process.

• Project Management Plan including the already known depended Man- PMP
agement Plans under consideration of

– the identified Project Management Processes and at which level
they need to be implemented,

– definition of required tools and methods for the processes,
– identification of Process dependencies,
– how tasks are executed and supervised,
– communication needed, in particular to and from the Stakehold-

ers,
– the foreseen project life cycle and the adjacent phase planning,
– reviews and reports for management in order to support decisions.

Another important outcome is a common understanding about the steer-
ing and managing the actual project execution among the project manage-
ment team. The focus is to apply the same approaches (= how to do some-
thing) regarding the different tasks. In particular project management has
to agree on

• approved correction methods to adjust the project results with the
PMP
• approved preventive actions to reduce potential risks and negative im-

pacts,
• approved error correction means, to eliminate mistakes/bugs identified

during quality assurance.

The Integration Management has additionally to care about Controlling
and Supervision of the ongoing project. Processes have to be defined (and Controlling &

Supervisionlater set up and realised) to

• allow a comparison between the current realisation and the PMP,
• estimate of efficiency in order to predict potential corrections, or pre-

ventive actions not to run out-of schedule,
• analysis and determination of project risks, in order to make sure, risks

are well identified and controlled,

124 8.4 Project Management Disciplines: The know-how Groups

• maintenance of an up-to-date project database supporting the creation
of status and progress reports and allowing an calculation of further
costs and schedule adjustments,
• supervising approved changes.

The last item is also part of the integrated Change Management, which
is also part of the Integration Management.

8.4.2 Scope Management

The Scope Management (formerly called Content and Volume Management)
touches the following issues:

• Collect requirements while defining and documenting the Stakeholder’s
needs regarding the project objectives.
• Define a detailed description of the project and the product.

– Regarding the achieved Product (as a result of the project) it
determines the characteristics and functions of the delivery and
or service.

– Regarding the current Project itself, it tells which steps have to be
undertaken to realise the Product with the defined characteristics.

Figure [8.10] tries to visualise the relationship between Project and Prod-
uct.

Figure 8.10: Relationship between Product and Project

While the product is statically broken into work packages (by means of
the WBS) the actual realisation of a work package (under quality control) is
a Work Unit under process control.Work Unit

These two scopes yield the following results:
Scope 1: Verify and Control the Scope of the Project

8.4.3 Time Management 125

• Project set-up: goals, requirements, and limits.
• Product definition: content and volume, final deliveries and acceptance

criterions.
• Project execution: organisation, milestones, risks, costs, efforts and

requirements, infrastructure, reporting chains.

Scope 2: Work Breakdown Structure

• Disassembling the product in Work Packages and assign Work Units
to it. The work package defines the functional aspects (including in- Work Packages &

Unitsterfaces) while the work unit is used to determine efforts, development
duration, risks and costs.
• The relationship between work packages might be complex and none-

linear. A WBS with the least interfaces (= dependencies) between the Minimize
Dependenciespackages is believed to be (functionally) the best breakdown for the

product.
• Typically, a hierarchical breakdown can be achieved, and each work Order Packages

package should be identified regarding it’s order and hierarchy level.
• Once the dependencies between the packages has been determined, a
Critical Path Algorithm can be used to achieve an optimal resource Perform CPA
planning.
• As input for the WBS the following information is crucial: WBS

– Structure of the project organisation (teams), this is the Organi-
sational Breakdown Structure . OBS

– List of components required to build the product.
– Risk Breakdown Structure detailing the project risks according to Risk Breakdown

identified category.
– Resource Breakdown Structure telling what resources have to be Resource

Breakdownused at each step for the product.

8.4.3 Time Management

Schedule Management determines when a particular step has to be started,
how long it will take, when it has to be finished and what are the dependent
predecessors and successors.

The actual time line can be arrived from the WBS. However, at that
level, the Schedule includes the aggregated efforts and costs. The PMBoK
does not require a certain method here, but typically for smaller projects,
a (linear) Gantt representation is sufficient, while lager projects require a
more complex representation in terms of the NetPlan technique, allowing
the inclusion and representation of alternate paths.

As a result of the Schedule one achieves:

• To-do lists of activities necessary for each step.

126 8.4 Project Management Disciplines: The know-how Groups

• The dependencies of the different steps including the required transi-
tion activities.
• The milestones, whether mandatory or optional to be achieved at a

certain time.
• A potential reschedule of activities, subject of Change Management.

A main part of project management is to constantly adjust the Sched-Adjust Schedule
ule with the current project progress and thus to determine the dates of
the forthcoming milestones. The adjustments are not necessarily considered
negative, but they allow us:

• To precisely determine duration, costs, efforts for the particular step.
• Additionally, they are the base to do a numeric calculation of these

respective values. While the first ’assigned number’ in the Schedule
may be educated guesses, the first correction can be used to allow a
much more precise determination for the relevant values.

By analogy, we can now use the derived numbers and do a projection
even on still ongoing (similar) activities. Regarding the whole Schedule, we
achieve in addition:

• The possibility to determine the efficiency of the team.
• An estimate of the Schedule Variance, that means measuring the im-SV

pact on individual Working Packages regarding duration, costs, and
efforts.
• Evaluating an Schedule Progress Indicator as a function of time, allow-SPI

ing to assess the quality of our planning with respect to the achieved
project progress.

8.4.4 Cost Management

Cost Management has the main tasks

• to estimate the gross costs for the (sub-)projects
• to provide the input for a detailed cost and budget planning,
• to define methods to allow cost control and a strategy in case of over-

spending.

Cost estimates can be achieved while correlating the amount of work with
costs.

Sample: Development of Windows 2000:
Lets assume Microsoft Windows 2000 with 40 MLoC. One real good
programmer writes 100 LoC/day and costs 500 $/day. To finish
W2K requires 400 programmers in 4 years. Development costs: 200
mio $, project costs roughly 500 mio $ (including management and
marketing efforts).

8.4.4 Cost Management 127

The PMI uses for the cost calculation the Earned Value Method . The EV
EV couples Milestones and the completion of the Work Packages with the
costs. The initial key data are the

• Budget at Completion , which determines the initially assigned costs BAC
of the project.
• Currently Estimated costs at Completion . EAC

• Currently Estimated residual costs to complete . ETC

During the projects evolution, Project Management needs to control the
following important individual financial key data:

• The Budgeted Cost of Work Scheduled, which is the Planned Value. BCWS & PV

• The Budgeted Cost of Work Performed , which is the Earned Value. BCWP & EV

• The Actual Cost of Work Performed and thus the Actual Costs. ACWP & AC

Figure 8.11: Time line of a project progress report in terms of cost develop-
ment [21]

The project managers task is to balance the Planned Value (PV) and
the realised Earned Value (EV) for every Work Unit with the Actual Costs
(AC) for that component (figure [8.11]). To estimate the Estimated Costs to
complete ETC and the Estimated Costs at Completion (EAC) three methods
are commonly used:

Those estimates are typically used to provide Project Management a
mean, whether the project is still in budget. A qualified PM software is
able to determine those numbers in case the AC are correctly assigned to
the work packages. A good knowledge of the project’s costs w.r.t. to it’s
progress SPI will not only show, whether the project is well understood
in terms of content and volume but also provide the required input values
to potentially allocate additional budgets needed and serve as a qualified
discussion base with stakeholders and sponsors.

128 8.4 Project Management Disciplines: The know-how Groups

8.4.5 Quality Management

The quality approach of the PMBoK follows the definition of the ISO. Ac-
cording to the American Society of Quality (2000), quality is seen as "how far
a group of intrinsic characteristics fulfils the requirements". Quality man-
agement, on the other side, is always determined by the expectations of the
Stakeholders.

The term "intrinsic quality" tells already, that quality is not necessarily
related to functionality. A product might be simple from the functional point
of view, but achieve a high quality standard. On the other side, complex
products exist, which fail to achieve high quality. A good example is a simple
text editor compared to complex word processing software.

For industrial processes, the PMBoK uses a differentiation between preci-
sion and predictability. Typical mechanical products for instances, are never
100 % precise, however their mechanical parameters (like length, diameter,
strength) will vary due to production circumstances. A good production
chain is able to predict the achieved values on a statistical base and provide
a uniform distribution of those parameter according to known distributions
(Gauss’ian or Normal distribution, Poisson distribution and others). In order
to improve the achieved quality parameters (on a process related or selection
base) several quality ’programs’ are know:

• Total Quality Management (TQM),
• Six Sigma,
• Voice of Customer,
• Cost of Quality (CoQ) and others.

The PMBoK identifies the following important inputs for quality man-
agement:

• Planning the quality :
Any planning has be streamlined with the initial expectations of the
product. According to this, the quality standards of the product have
to be defined and need to be balanced with efforts and costs. Further,
here the (quality) transition criterion’s are provided which are required
to achieve a certain milestone.
• QM methods and tools:

This depends of course on the product itself. Industrial production
requires us of statistical methods, whereas software development often
uses simple ’defect’ counters.
• Realising QM :

This might be an organisational question, since often already a QM
department exist, which is responsible for Quality Assignment QA.
One important issue is, that progress is ’trackable’. This means, any
changes in the product, subject for QA, needs to be documented and
reported.

8.4.6 Human Resource Management 129

• Managing quality :
For industrial products, a quality chart (run chart) has to be as-
signed/attached to the product. For software, currently no correspond-
ing scheme exits.

Figure 8.12: Pareto chart of error/defect distribution per category/module
[21]

A common scheme for error assessment is to analyse the errors/defects
and to sum them up per category or (software) module. A diagram showing Pareto chart
such a distribution is known as Pareto chart (figure [8.12]).

8.4.6 Human Resource Management

Human Resource Management requires technical means to size and to plan
and to control the team, and personal skills to lead and to manage the team
members.

Among the technical means, the following means are useful (figure [8.13]):

• Templates: Descriptions of positions, rating sheets, and sheets for con-
flict management.

• Checklists: Description of rôles, competences, certificates of team mem-
bers, security rules.

• Organigrams: Structural breakdown of the organisation in terms of
rôles and competences (organisation chart).

• RACI matrix: Breakdown of rôles in terms of Responsibility, A count-
ability, Consultancy and Informed of groups and individual persons
regarding specific tasks.

Starting point for sizing the team is the WBS. After the PL has identi-
fied the required skills and qualifications for a task/rôle, the Human Resource

130 8.4 Project Management Disciplines: The know-how Groups

(HR) department will publish an advertisement to start recruiting. Depend-
ing on the need and urgency, the job advertisement is directed towards (1)
internal staff members, (2) some dedicated tenders, or perhaps will be (3)
open invitation to tender in a defined bid form.

After qualified tenders have been selected (based on their resumes), it is
task to the PL or perhaps the sub PLs to interview the individual persons
and finally to propose the chosen ones for contracting to the HR department.

Figure 8.13: Tools for the PM to support Team management

Leading and controlling the team is subject of the personal skills of the
PL. Main ’tools’ are observation of and talks with the individual project
members. Based on the achieved impressions (in comparison with the other
group members), rating sheets can be a useful tool to monitor the persons
and the group. For internal staff members it is common to finalise the rating
sheet together the respective persons ("360o feedback") . However, this360o Feedback
might not be the task of the PL itself (as project supervisor), but rather
for disciplinarian superior in terms of line manager. Improvement of teams
means to improve the members individually and the inter-team relationships
and behaviours.

8.4.7 Communication Management 131

Under the second category we can include:

• a ’code of conduct’ for the team (’team spirit’) Code of Conduct
• defining the proper team positions for the individuals.
• organising team-building work shops,
• setting up the working conditions (office spaces) of the team such, an

optimal inter-action is achieved. However, concerning today’s commu-
nication possibilities there is a trend to construct ’virtual teams’ which
are coupled by Internet.

• Improving the team per individual may include

– additional qualification: internally, externally, or based on CBT
(Computer Based Training),

– bonus system: overspending hours, finishing in schedule,
– mediation and conflict solution strategies.

8.4.7 Communication Management

Known from computer communication, in order to achieve a revisable and
reliable transmission of information, the recipient of the message has to con-
firm its reception.

Correct reception, however does not mean, that the message has been
understood. It is task of the project management to use those means for
communication which assures a maximum of understanding. This includes:

• The way of presenting a message by means of concise design and phras-
ing, proper gestural presentation and other visual means.
• The adoption of the message presentation according to the recipient.

Thus the same message may be differently phrased whether it is di-
rected towards the team members, the upper management or the Stake-
holders.
• Whether the message is been transmitted over a ’formal’ or ’informal’

communication channel, and/or
• is due to a regular schedule, e.g. a progress or weekly report for which

an ’incremental’ message form could be suitable.

Further, the

• the subject and content, and the
• severity/priority of the message has a direct impact on it’s presentation,

as well as it is triggered by exceptional circumstances.

For project management regarding the PMBoK approach, Progress Re- Progress Reports
ports are indispensable. Those formal reports have to include information
about

132 8.4 Project Management Disciplines: The know-how Groups

• the realisation status of a task or subtasks
• a performance measurement (see 10.4.4)
• the proposed termination date (see 10.4.3)
• QA status and means to improve quality (see 10.4.6)
• impact on the Project Management Plan PMP (see 10.4.1)
• approved changes,
• delivered products.

The reported values have to be included into the Schedules and into the
Planning Tools (Gantt charts).

One important part of Communication Management is the Stakeholder
Management. Apart from condensed progress reports, exceptional reports
are import here. In order to achieve transparency in the current project
realisation, these reports should describe the open items and challenges and
how they have been solved or how solutions are proposed.

8.4.8 Risk Management

There is an ongoing discussion, whether Risk Management (RM) belongs to
Project Management, or Project Management is a particular part of Risk
Management. In the context of the PMBoK, the following issues belong to
the Risk Management:

• Risk Management Planning – decide, where and for what tasks RM
shall be considered.
• Risk Identification – determine and describe, which risks are important

for the project’s outcome.
• Risk qualification – prioritising risks according to impact and category,

estimate probability for happening.
• Risk quantification – numerical risk analysis for each task and impact

on the whole project.
• Risk fighting strategies – how to react on situation in which the ’risk’

becomes apparent.
• Risk management – follow up identified risks, controlling open risks,

and act on apparent risks according to the risk fighting strategies.

Risks are unavoidable for projects; if no particular risk exist, the task
can be executed by line activities. Risk identification, qualification (in terms
of impact) and quantification are the most important tasks of Project Man-
agement.

According the WBS, it is necessary to develop a risk assessment in terms
of a Risk Project Plan (RPP). This assessment could be broken down inRisk Assessment
terms of (1) milestones and (2) impact. The impact can be subdivided inRisk Impact
(a) costs, (b) schedule, (c) quality, and (d) completeness.

8.4.9 Procurement Management 133

How this assessment checklist is derived, depends on the contents of the
project. Known approaches are:

• Brainstorming : The project team tries to identify the risk, maybe Brainstorming
accompanied by a moderator.

• Delphi-Method : Particular Experts are involved to identify the risks Delphi-Method
anonymously.
• Questionnaire: Team members, Stakeholders, and external Experts are Questionnaire

asked for particular risks.
• Determining the Reasons: While the potential risks are grouped in Determing Reasons

categories, the risk assessment is refined and the risk sources are de-
termined.
• SWOT Analysis: Here, the Strength, Weaknesses, Opportunities and SWOT Analysis
Threats are taken into account analyse the project under those condi-
tions.

Those qualifying parameters have to accompanied by a quantitative risk
analysis:

• Impact : Identifying the most important risks for the project in terms Impact
of completion.
• Expected Monetary Value: Chances are treated as positive values, while EMV

risks are taken as negative values multiplies by their expectation values.
The resulting sum is the EMV, which might not particular useful.
• Decision-Tree Analysis: Here, two-dimensional calculations take place DTA

and allowing a diversification of results (for each decision chain).
• Modelling and Simulation: The outcome of individual steps are esti- Model & Simulate

mated in terms of a Monte-Carlo simulation.

As a result of an apparent risk, the Project Management has to act in
terms of

(i) internal changes restructuring the teams
(ii) requiring additional support

which are both subject of Integration Management.

8.4.9 Procurement Management

Procurement Management within the PM deals with purchasing or acquiring
particular parts of the project from an external party, whether in terms of
products or services. Three major steps are involved:

1. Planning what to purchase/acquire.

2. Setting up the bidding (tendering) for the particular product/service
and choosing a vendor.

134 8.4 Project Management Disciplines: The know-how Groups

3. Setting up and establishing the contracts with the chosen vendor and
perhaps terminating it.

Certainly, the first step is to evaluate the ’Make-or-Buy’ analysis. Here,
PM has to investigate

• what are the costs of buying/leasing/renting/licensing + maintaining
a product/software/service
• in contrast to building/developing/establishing the product/software/ser-

vice as part of the project.

Often this turns out to be a political questions and answers are only
determined by the costs but rather, whether this decision is aligned with the
strategy of the company or the stakeholders.

In case contract with third-party companies (the chosen vendors) are
settled, the commercial framework has to be mutually agreed upon:

• Cost Plus FeeCPF
The product is priced on the actual costs.
• Cost-Plus-Percentage of CostCPPC

The product is price on the actual costs plus a cost-dependent fee.
• Cost-Plus-Fixed-FeeCPFF

The product is priced on the actual costs plus constant fee.
• Cost-Plus-Incentive-FeeCPIF

Parts of the expected costs (and fees) will be paid in advance, while
the final price depends on quality and schedule.
• Time And MaterialT&M

Here, the product -as deliverable is not defined yet and costs will be
covered based on activity confirmations.

8.4.9 Procurement Management 135

ETC EAC

Sliding
Estimates

From the efforts and spend-
ings Actual Costs (current)
ACC a prognosis for the
cost developments is possible.
Based on those number, a new
Estimate to Complete ETC
(again in terms of costs) can
be facilitated.

Use the newly derived ETC and the
current ACC to calculate the Estimated
Costs at Completion EAC:

EAC = ACC + ETC

Rough
Estimates

Use the current Earned Value
EVC as guess for the ETC:

ETC = (BAC − EV C)

Consider the rest budget and the
Earned Value (EV):

EAC = ACC +BAC − EV

Corrected
Estimates

The ratio between BCWS (=
PV) and BCWP (= EV) is
considered as Cost Perfor-
mance Index CPI and evalu-
ated for the individual mile-
stones/work packages. The
mean of the CPI is used as
CPIC (current) to determine
a corrected estimate:

ETC = (BAC−EV C)/CPIC

Apply corrections as indicated by the
CPI into the calculation:

EAC = ACC+((BAC−EV)/CPIC)

Table 8.1: PMBoK cost calculation approaches

136 8.4 Project Management Disciplines: The know-how Groups

Chapter 9

Agility in Project Management

The pitch of the SW development starting the commercial use of the Internet
about 1995 triggered a new evaluation of the SW development methods
questioning the so-far relatively static methods.

It became apparent, that ’agile’ and more ’iterative’ methods are re-
quired, originally discussed as Extreme Programming and now known as
Agile Project Management APM.

Many of those methods were tailored to cope with SW development only,
however Scrum has an significant impact on general project management.

9.1 Extreme Programming

The door opener of Agile Project Management APM was certainly Extreme
Programming XP: XP

• Founded by Kent Beck, Ward Cunnugham, and Ron Jeffries, in the
year 2000, Extreme Programming XP became publicly known.
• XP is aiming to achieve a high-quality SW development.
• Here, the SW developer is constantly supported by a quality auditor,

checking and auditing the code while it is written (and not perhaps
later, in case bugs become obvious).
• SW development is realized in small teams, which are closely connected

with the customer.

9.2 Feature Driven Development

The Feature-Driven Development FDD working model describes in the first
place a rôle concept required for the SW development process. Here, the
customer or the principal introduces the (SW) specification as sets of fea-
tures.

FDD was initiated by Jeff DeLuca in terms of a five-tier process: FDD

137

138 9.4 The Agile Manifesto

1. Definition of the entire SW model

2. Setup a feature list

3. Plan a feature

4. Detail design of a feature

5. Develop a feature

9.3 Dynamic Systems Development Method

The Dynamic Systems Develop Method DSDM was initially defined until
it’s version 4 in 2007, as IT specific only.

• While quality control was the main focus regarding the XP SW devel-
opment. DSDM requires in particular the involvement of the principalDSDM
as necessary third party.
• During the SW development process the product may be modified in

the presence of the principal thus a rapid finalization possible.

DSDM recognizes three development phases and additionally five stages
(3 Phases & 5 Stages):

1. Pre-project phase

2. Project phase including the stages:

• Feasibility study
• Business study
• Functional model iteration
• Design & Build iteration
• Implementation

3. Post-project phase

9.4 The Agile Manifesto

The year 2001 was the ’official’ starting point of the APM, since the most
influential representatives of the agile SW development stuck together (Kent
Beck, Mike Beedle, Martin Flower, Kent Schwaber, Jeff Sutherland, and oth-
ers) and laid down the principals of agile methods in a Code of conduct
known as Agile Manifesto [17]:

"We are uncovering better ways of developing software by doingAgile Manifesto
it and helping others do it. Through this work we have come to
value:

139

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more."

In addition, the Agile Manifesto defines 12 principals:

1. Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

2. Welcome changing requirements, even late in development.
Agile processes harness change for the customer’s competi-
tive advantage.

3. Deliver working software frequently, from a couple of weeks
to a couple of months, with a preference to the shorter
timescale.

4. Business people and developers must work together daily
throughout the project.

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get
the job done.

6. The most efficient and effective method of conveying infor-
mation to and within a development team is face-to-face
conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The spon-
sors, developers, and users should be able to maintain a
constant pace indefinitely.

9. Continuous attention to technical excellence and good de-
sign enhances agility.

10. Simplicity–the art of maximizing the amount of work not
done–is essential.

11. The best architectures, requirements, and designs emerge
from self-organizing teams.

12. At regular intervals, the team reflects on how to become
more effective, then tunes and adjusts its behavior accord-
ingly.

140 9.5 Scrum

9.5 Scrum

Scrum can be described as highly interactive SW development methods and
consists of a limited number of elements and steps:

• The Product Owner provides a prioritized list (wishlist) of product
attributes, which are known as the Product Backlog.
• Within a Sprint planning the Team picks up some items from that
wishlist and discusses how realize those, resulting in a mutually agreed
so-called Sprint Backlog.
• A specific realization period – a Sprint – is provided to the Team toSprint

finish their work. The time period covers typically up to 4 weeks.
Progress is reported and measured by means of daily Scrum Meetings.
• Main task of the Scrum Masters is to accompany the team’s work and

to remind and to monitor the realisation of the Sprint Backlog items.
• At the end of each Sprints a final realized and deliverable work unit

shall be available, subject

(i) to be presented to the Stakeholder,
(ii) to be hand-over the customer – or perhaps –
(iii) to be put aside (or scraped).

• The Sprint is terminate by means of a Sprint Review and Lessons
Learned.
• The following Sprint cycle starts picking up new work units out of the
Product Backlog and the team continues working (see figure [9.1]).

9.5.1 Scrum Rôles

Scrum as method deserves attention of the participant while acting accord-
ingly to their foreseen rôles within the Scrum processes:

• The Product Owner is the representative of the customer and substi-Product Owner
tutes their interest within the project.
The Product Owner is responsible to carry out the release planning,
defining the product catalogue and prioritizing the individual items for
the next Sprint (Sprint Backlog).
• The Team is responsible for the detail specification of the product itemsSprint Team

and implementing (developing) the features while providing the re-
quired level of quality.
Due to this requirement, the team includes members from different dis-
ciplines (SW developer, architects, tester) and having an average size
10 to 15 persons.
The Team has sole responsibility for it’s own organization and schedul-
ing the development steps within the current Sprint.

9.5.2 Product Backlog 141

Figure 9.1: The Scrum development cycle [37]

• The Scrum Master initiates the Sprint and takes care about it’s real- Scrum Master
ization.
Further, the Scrum Master is the de-facto coordinator of the team and
bridgehead towards the Product Owner the Stakeholders respectively.

9.5.2 Product Backlog

Starting point of the project planning is the Product Vision:

• The Product Vision includes the attributes and requirements of the Product Vision
product, which are in particular defined in the Product Backlog being
the responsibility of the Product Owner.

• Scrum distinguishes between Functional Requirements FR and None-
Functional Requirements NFR, which commonly define the explicit
quality requirements.

• The elements of the Product Backlog are called User Stories and de- User Story
scribe their functional and/or usage requirements.

• The Release Plan lays down the realization of the Product Backlog and Release Plan
provides it’s logical order.

• In addition, an assessment of the required resources and the (expected)
development pace of the teams; the realization time-frame respectively.

142 9.5 Scrum

9.5.3 Scrum Artefacts

In general, Scrum distinguishes among processes (called Events), for instance
a Sprint and measurable items described as Artefacts to be reported and
managed by the Scrum Master :

• Product Backlog
Pool of product attributes known as User Stories and items to be
realized within the release. Responsibility is delegated to the Product
Owner.
• Sprint Backlog

The Work Packages assessed by the team for one Sprint in terms of
individual Work Units also called Tasks.
• Product Increment

The implemented/realized product attributes/items by the team dur-
ing one Sprint.
• Impediment Backlog

A list of (negative) conditions and (missing) tools acting as a handicap
to realize a Product Increment. The Scrum Master is responsible to
care about those.

9.5.4 Scrum versus legacy Project Management

Scrum provides the team a significant level of control regarding the actual
project realization. Further, the team is allowed to contribute to the detail
specification of the product:

1. Specification:
The list of product attributes as defined by the Product Owner.

2. Design:
The detailed architecture and specification of the product, commonly
defined and agreed upon by the Product Owner and the development
team.

3. Work Packages:
The team decides upon the individual Work packages; not the Product
Owner.

In opposite to the Product Backlog, the Sprint Backlog includes those
tasks, which ought to be realized by the team within the current Sprint.
While the Product Backlog is to be maintained by the Product Owner ; the
team is responsible to care about the Sprint Backlog.

143

9.6 The Sprint Process

In the Scrum spirit, development takes place in iterative cycles, the Sprints. Sprints

• At first, Work Packages are agreed upon in the Sprint Planning (’What
?’).
• The Team is self-responsible for the implement (’How ?’) the Work
Packages.
• The duration of a Sprints shall not exceed 30 (working) days; it is

actually this limit which determines the number of acceptable User
Stories as result of the Sprint Planning.

As a result of a Sprints the team has realized a Product Increment, for
instance, if a particular SW function has bee implemented, which was ad-
ditionally quality-tested and well-documented. The final aim is – after a
consecutive series of Sprints – to have the finale product ready for ’delivery’.

Figure 9.2: The Sprint process [9]

144 9.6 The Sprint Process

9.6.1 Sprint Planning

Starting from the Product Backlog within a one-day Sprint Planning Meeting
it is discussed, which products/product items need to be realized within the
next Sprint.

1. At first, the Product Owner details his ideas about the product items
to be subject of the forth coming Sprint.

2. The development team discusses the resulting requirements and efforts
accompanying the development of the product items.

3. Breaking down the User Stories into Work Packages the team decides,Work Packages
which tasks can be realized.

As a result of the Sprint Planning Meeting (lasting for typically 8 hours),
the team is able to commit those objectives to the Product Owner and the
Scrum Master which are identified as realizable Work Packages.

9.6.2 The Sprint Backlog

The result of the Sprint Planning is known as Sprint Backlog and includes

• a description of the single Work Packages,
• the responsibilities of the individual team members for eachWork Pack-

age,
• the development effort attached to each Work Package, and
• the time frame required for the development.

9.6.3 Daily Scrum

Short term management of the team and measuring the results is facilitated
by means of a Daily Srucm Meeting , supervised by the Scrum Master andDaily Scrum
lasting typically 15 minutes:

• Each team member needs to discuss it’s achievement since the last
Daily Scrum.
• New activities (due in the next days) are prioritized.
• Open problems and Impediments are discussed.

Impediments resulting in the degradation of the daily work (e.g. missingImpediments
SW, storage volume) need to be addressed to Scrum Masters who needs to
record (Impediment Backlog) and of course to solve those.

The central and public tools is the Task Board :Task Board

9.6.4 Product Increment 145

• As a result of the Sprint Planning a respective Work package is iden-
tified, treated as task recorded on one line and illustrated as ’moving’ Tasks
Post-It mentioning the task and the assigned team member.

• The rows however, show up the state of the task : Task State

1. To-Do

2. In-Progress

3. To-Verify and

4. Done

Figure 9.3: The Sprint Task Board [8]

9.6.4 Product Increment

At the end of a Sprint a measurable Procuct Increment shall be due and
clearly visible on the Sprint Board in the state Done. However, often within
projects, the team members have a different ’notion’ what it means, a Work
Unit or perhaps a Product Feature is really ⇒ Done! What means Done?

Due to the individual rôles in the project the understanding of ’Done’
might be subject of mis-interpretation. Thus, it requires a common under-
standing which should be found while the team is initially set up:

• A feature is fully implemented, if all functional and none-functional
requirements (FR/NFR) are realized.
• The product item as passed all functional tests (Test Cases).
• The Usability of the product item is verified.
• The product item did not exceed n defects of Severity 2 and no more

severe ones.

146 9.6 The Sprint Process

9.6.5 Sprint Review

Once the Sprint is terminated (after the defined period), a (public) Sprint
Review takes place.Sprint Review

• The achieved results, theProduct Increments are presented to the Stake-
holder,
• which need to validate those against the (expressed) specifications and

perhaps the (not explicitly expressed) requirements.
• The achieved results are the basis of the future Sprint Planning and

perhaps
• modify the Product Backlog.

The team participate in the Sprint Review actively and discusses with
the Product Owner and the Scrum Master the requirements for the next
Sprint. Sprint Reviews are aiming to improve the team’s qualification to
perform the next Sprints.

9.6.6 Measuring the Sprint Progress

The Scrum Master takes responsibility to assess and measure the results
achieved during the Sprint processes:

Figure 9.4: Sprint Burndown diagram [16]

• Sprint Burndown Chart :Sprint Burndown
Chart Starting from the Sprint Backlog the number of Work Units in state

’Done’ are subtracted on a daily (or weekly) base from the number of

9.6.7 Sprint Retrospective 147

items in the initial Backlog. At the end of every Sprint the residual
difference shall approach ’0’.

• Sprint Product Burndown Chart : Sprint Product
Burndown ChartInstead of the Work Units, now the Product Increment is used and

displayed as a function of time. This diagram shows equivalently the
realized product items per Sprint period.
• Release Burndown Chart : Release Burndown

ChartIf, however, the time-scale stretches the entire release period and not
just a Sprint an estimate for the Release is possible.
• Velocity Chart : Velocity Chart

The performance of the Sprint teams can additionally be measured
comparing (and displaying) the difference between the fore-castedWork
Units in the Sprint Planning meeting against the final realized ones.
Again here, the time-scale spans the entire Release cycle.

9.6.7 Sprint Retrospective

The final corner stone of every Sprint is the Sprint Retrospective. The
achieved results of the last Sprint shall be assessed by means of

• the structure and ’composition’ of the team,
• the actual Sprint process and management, and
• the available tools and resources.

Goal is to provide a quality assurance of the Scrum process, to support
knowledge-transfer, and to address potential improvements. Those will be
subject of the Impediment Backlog already for the next Sprint acting as
Lessons Learned.

148 9.6 The Sprint Process

Chapter 10

Process Control with Six Sigma

Recurring steps within a project can be understood in terms of a process.
The outcome of a process are measurable and are subject for improvements
according to the Deming Cycle Plan → Do → Check →Act.

The 6σ process model assesses the following tasks:

• Define, Measure, Analyse, Design, Verify: DMADV
Create a project to realise a product with an initial quality level of 4σ:

– Define design goals and objects, which coincide the with the cus-
tomer’s expectations and company strategy.

– Measure and determine the Critical To Quality CTA elements of
the elements of products and the creating processes as well as the
involved risks.

– Analyse development and design alternatives based the High-Level
Design and chose the best fitting design.

– Design the required details and optimize those by means of a
verification study.

– Verify the resulting design, create prototypes, implement the pro-
duction processes, and finally hand it over to the process owner.

• Define, Analyse, Measure, Improve, Control: DAMIC
Continuously improve a production process:

– Define the problems, perhaps based on the Voice-of-the-Customer,
the project goals, and the companies strategy.

– Measure the quality performance of a process.
– Analyse the gathered measurement data and evaluate the cause/-

effect correlation. Determine, whether this analyse includes all Cause/effect
correlationpotential circumstances.

– Improve and optimise the processes.

149

150 10.2 FMEA

– Control the achieved process statuses and continuously determin-
ing deficits yielding potential quality problems (defects) while set-
ting up control systems.

10.1 Fishbone Diagrams

Comparable to a mind map a Cause and Effect diagram allows to under-
stand dependencies and causes resulting in effects. Kaoru Ishikawa was the
inventor of the so-called Fishbone diagrams.

Figure 10.1: Fishbone diagram to asses IT SW development problems

The Fishbone diagram in [10.1] has been adopted to the IP project man-
agement case:

• The lower parts represents the common project management issues as
known from the usual Ishikawa diagrams, where as
• the upper parts reflects the specifics of software engineering (SE) in-

cluding the causes:

– specification,
– methodology, and
– engineering.

10.2 FMEA

Identified defects and bugs can be systematically assessed by means of the
Failure Mode and Effects Analysis FMEA (see figure [10.2]) method and
may be analysed according to the following categories:

151

• Failure Mode Under which circumstances the error did occur.
• Failure Effect What are the consequences once the error had occured.
• Severity (ranging between 1 and 10) determining the impact of the

error in relative to the usability of the product/step.
• Failure Cause The potential cause of the failure.
• Occurrence (again ranging between 1 and 10) providing a measure,

what is the frequency of the failure to occur.
• Detection (on a scale from 1 to 10) assesses the likelihood with which

the error is probably detected.
• Risk Priority Number RPN = Severity × Occurrence × Detection

Figure 10.2: Setting up a FMEA analysis

While the discussed Project
Management methods and
frameworks can in principal be
used for any kind of project,
now we turn onto the specifics
of IT (=SW) Product Devel-
opment Management and it’s
merits.

Part VI

IT Product Development
Management

153

Chapter 11

Software Development and Life
Cycle Models

11.1 The SW Production Chain

Today it is recognised that any Computer software has it’s own life cycle.
This life cycle probably starts with the initial idea and is certainly not fin-
ished when the software becomes into operation. Since the first software
projects have been realised (see figure 4), different life cycle models have
been proposed and effectively used here. While our understanding of the
software lifecycle is briefly shown in figure [11.1], we will discuss the heritage
and the currently adopted models as well.

Figure 11.1: The main stages in the software life cycle [35]

In order to realize a high-quality software need to put attention on

• a careful analysis of the user’s requirements,
• a fitting SW design,
• the subsequent implementation, and
• the required module/ system/acceptance-tests, and
• finally the release

155

156 11.2 The Waterfall Model

regarding it’s procedural dependencies and the realizations conditions – which
are subject of the IT project management with respect to

1. planning,

2. realization, and

3. supervision,

Figure 11.2: The four columns of the SW production chain

While the observance of the functional requirements FR defined within
the designs and realized in the subsequent implementation and assured by
the module tests, to achieve compliance with the none-functional attributes
NFR the SW production chain is very important.

In particular with complex SW projects the integration of the
individual modules to achieve running system can be considered of

great importance.

11.2 The Waterfall Model

The Waterfall Model is probably the earliest approach to improve software
development, as it has bee defined in 1956 already a part of the Semi-
Automated Ground Environment (SAGE) as so-called stage-wise model. The
final description of the Waterfall Model was carried out in 1970 and is shown
in figure 81.

The main features of the Waterfall Model are:

• Recognition of feedback loops between the different stages and thus
the impact of errors on one stage is restricted to the next stage and
not passed to the final product.

157

• The inclusion of prototyping in the software lifecycle as a so-called
’build-twice’ step.

As a result, the Waterfall Model (figure [11.3]) demands an existing veri-
fication/validation process before entering the next stage. Since ’open issues’
are not accepted, in particular the development of interactive systems, re-
quiring human intervention can not be handled efficiently – the concept of
"Use Cases" was not present yet.

Figure 11.3: The Waterfall Model of the Software Live Cycle [6]

11.3 Use-Cases and Test-Cases

In today’s software development, the design phase of the product or any
component of the product includes a Use Case. The Use Case is a functional
description of way, the product or the component is supposed to work. The
event of Object Oriented programming has produced a certain schematic OO
description of the components action flow, known as Unified Model Language
UML which can be considered of a standardized description. UML

UML Use Case charts are the de-facto standard to represent dependen- Use Case
cies as can be picked up from figure [11.4].

158 11.3 Use-Cases and Test-Cases

Figure 11.4: Use Case how to evaluate a written exam

The UML introduces several sets of charts:

General Mainly Programming

Use Cases Charts Class Charts

Packeting Charts Object Charts

Usage- and Deployment Charts Communication Charts

State Charts Time Charts

Activity Charts Interaction Charts

Component Charts Sequence Charts

Table 11.1: UML Chart types [28]

Another common method is to specify the Use Case in an Activity Table
while using a generic template [11.2].

Regarding software development each component, as described in terms
of a Work Unit (PMBoK), has to be accompanied by a Use Case. Thus, the
Use Case is part of the software design/development.

According to the Quality Plan the QA department has to create TestQP
Case suites. Here, the functional dependencies of the component are used
to derive tests whether the software component is in conformance with the
Use Case or not. Hence, any substantial tests have to prepared in term of
Test Cases, which in turn depend on the existence of qualified Use Cases. InTest Cases
particular, to derive the necessary Use and Test Cases becomes difficult and

159

time-consuming for complex software products. As a result, complexity and
quality of software products are believed to be opposing attributes.

As a result, only in the case of a well-documented software component,
it’s quality can be measured. A poorly documented software is almost im-
possible to gauge and effectively leads to a frustrated user (and tester !), or a
user who does use only parts of the software’s capability (while paid for the
total). In spite of this, pretty often the QA department sets up tests based
on (educated) guesses or needs to do a reverse engineering of the software
component (however, typically inhibited by most companies policies).

A Test Case‚ should include the following (starting from the Use Case):

• Default behaviour: Provides the software component the expected re-
sults for default settings and input variables?

• Conditional behaviour: In case the component offers additional ’switches’
/ ’options’ and/or ’arguments’/’parameters’, do they work as expected
(described)?

• Extreme behaviour: How does the component recognise input values
out of specification and what are the results?

• Erratic behaviour: How does the component react, in case the required
environmental conditions are not met/outside specification?

The qualified Test Case would detail the expected results based on a
functional breakdown for the software component, while explicitly mention-
ing the conditions of the individual tests.

In conclusion, these dependencies very much underline the importance
of a qualified design and development documentation. In particular, it is
required to provide an exhaustive list of error and return codes for any soft-
ware component. Since any documentation is expansive, in particular for
development documents two approaches are common to ease this task for
the developers:

• In-line documentation within the code: In the software code itself,
relevant sections are documented with a specific mark-up language
easy to parse and to collect.
The programming language PERL has pioneered this, known as ’Plain
Old Documentation’ POD [55].

• Documentation within the development framework: Some frameworks,
like Eclipse, use context-sensitive information retrieval by means of a
plug-in. Here, the current changes can be recognised and documented
and in the same token saved (and retrieved) in a version-dependent
manner.

160 11.4 The V-Model

11.4 The V-Model

The V-Model is a process-oriented approach for software development as part
of IT project management and has been inspired by Barry Boehm and furtherBarry Boehm
developed in Germany, in particular for Government and here in addition
for military projects. The 1986 published V-Model is now superseded with
it’s successor the V-Model XT.

Applying the V-Model for software developments can be seen as a corner-
stone to comply with the ISO 9000 standards. It actually requires a partic-
ular infrastructure for software development and couples the responsibilities
of Project Management, Quality Management, Configuration Management,
and Software Development (figure 11.5).

Figure 11.5: Interaction of the different PM levels according to the V-Model
[35]

Unlike classical project management approaches which defines phases and
transitions on a time line, the V-Model is procedure-driven:

• The V-Model defines a set of inter-related Events and Activities for
planning and design, software development, testing, and the final roll-
out process.
• In addition, the V-Model is document driven:

During project execution, the activities are broken down per manage-
ment level and the resulting state has to be documented to provide the
required transparency for the project evolution.

Figure [11.6] depicts these dependencies and also provides a visual ex-
planation for the term "V-Model (1997)".

The drawbacks of the V-Model approach are the following:

161

Figure 11.6: The V-Model

• It formalises the whole project management and software development
(and demands the respective documents) while burdening it with a lot
of administrative tasks.

• Software development is strictly pre-determined, which is unrealistic;
and any change has to be approved.

• It provides too little interaction among the team members and thus
does not exploit the team creative capacity.

11.5 The V-Model XT

Both the V-Model 1997 and the new V-Model XT is maintained by the Ger-
man BMI-KBSt (Koordinierungs- und Beratungsstelle der Bundesregierung) KBSt
and made public available (in a set of documents downloadable). Within
the V-Model XT several new approaches are incorporated which are aligned
with the achieved progress in the IT world:

• On the lowest level it introduces the Project Subject:

– This might be a hardware solution,
– a software system,

162 11.5 The V-Model XT

– a complex system consisting of both,
– an embedded system,
– or perhaps system integration;
– however it does not cover system services (which are out of scope).

• The definition of the Project Rôle tells who is using V-Model XT for
co-ordination:

– the customer (Auftraggeber) managing one or several the vendorsCustomer &
Vendor (Auftragnehmer),

– the vendor (Auftragnehmer) employing it itself or other sub-vendors,
– both customer and vendor using the V-Model XT.

• Thus we achieve the definition of the Project Type, whether it is

– a customer-driven project,
– a vendor-driven project,
– or a shared project where both parties using the V-Model XT.

Thus, the V-Model XT adjusts explicitly to the typical situation for
Government-related development, where the Government acts as ’client’ and
the ’vendor’ is an external company; chosen after the bidding process.

The V-Model XT can be characterised as an incremental, adaptable,
and model-driven procedure model. Unlike the original V-Model it does not
employ formal documents, but rather Computer Aided Software Engineering
tools are now considered for description and follow up. While the incrementalCASE
structure of the V-Model XT is displayed in figure [11.7], it covers the main
modules:

• PM: Project Management
• QA: Quality Assignment
• CM: Configuration Management
• PM: Problem- and Change Management

Figure 11.7: Incremental system development according to the V-Model XT
(on the vendor side) [3]

163

Any change of the Product (or a sub-product) is called an Activity and Activity
has to obey the following phase changes (see figure [11.8]).

Figure 11.8: Phase changes of a product or sub-product

While the V-Model XT is mostly deployed in Germany it is recognised
and used internationally, for instance for the US American ITS (Intelligent
Transport System) and documented in the ’System Engineering Guidebook
For ITS ’ (figure [11.9]):

Figure 11.9: Adoption of the V-Model XT for the ITS [25]

11.6 The Spiral Model

The original Spiral Model was invented in 1988 by Barry W. Boehm and it
projects the life-cycle of a (software) product on a (repetitious) spiral while
defining four quadrants (Q1 7→ Q4):

• Q1: Determines objectives, considers alternatives and constraints
• Q2: Evaluation of alternatives, identify and resolve risks
• Q3: Develop and verify, even consider next-level product
• Q4: Plan next phases

Unlike the other models, the Spiral Model is risk-driven; after each
’round’ the risk to start with the next round is assessed. The risk assessment
is based on certain key questions needed to be answered and documented:

164 11.6 The Spiral Model

1. What are the objectives?

2. What are the constraints?

3. What are the alternatives?

4. Which risks are involved?

5. How to resolve the risks?

6. What would be the result of the risk resolution?

7. What are the plans for the next phase?

8. What are the commitments?

Figure 11.10: Spiral Model according the Boehm [6]

In this context, each cycle (’a round’) can be considered as stage (figure
[11.10]) :

• Round 0: Feasibility study
• Round 1: Concept of operation
• Round 2: Specification of the top-level requirements

Note: The Spiral Model introduced in chapter 7.2 (figure [5.14]) is a
milestone-driven approach and thus differs in it’s scope from Boehm’s ap-
proach.

165

11.7 GQM

GQM is the acronym for Goal/Question/Metric and has been introduced
by Victory Basili at the University of Maryland in 1983 and improved by
Dieter Rombach 1988.

It can be seen as enhancements of the following :

• QFD Quality Function Deployment (developed by Yoji Akao 1966 at
the Tamagawa University in Tokyo)

• SQM Software Quality Metrics (developed in 1980 by Marine for Met-
rics Incorporated) approaches and is suitable for Quality Management
and Project Management as well.

GQM is a paradigm-driven approach; the result of any measurement is GQM Plan
only valid in the context, as provided by the GQM plan.

Figure 11.11: The four GQM phases [5]

Within the GQM approach, the following phases are considered (figure
[11.11]):

1. The GQM plan

2. The definition of the questions and the metric for measurements

3. The collection of the measurement data

4. The interpretation of the measurements in the given context

Unlike other models, it respects the origin of the measurement data;
sensible data are sheltered against random access.

Most import for software development is, that GQM provides a procedu-
ral language allowing a modelling of it’s dependencies as shown figure [11.12].
For Eclipse, a plug-in FOCUS is available which allows the modelling.

166 11.8 The RUP Model

Figure 11.12: Schematic lay-out of a GQM plan [12]

11.8 The RUP Model

The RUP Model has been created by the company Rational (like Rose, Clear
Case and other Rational software products) in 1996, which has been taken
over by IBM. RUP is as procedure model for software development and
currently available in version 9 (figure [11.13]).

Like Rose, RUP uses an Object Oriented approach for software devel-OO
opment and basically divides software development into two independent
(orthogonal) streams:

• Disciplines:

– Business Modelling
– Requirements
– Analysis & Design
– Implementation
– Test
– Deployment – and additionally
– Configuration & Change Management
– Project Management
– Environment

• Phases:

– Inception (initial design providing the Lifecycle Objectives LCO)LCO

167

Figure 11.13: Development of OO modelling frameworks [52]

– Elaboration (design, yielding the Lifecycle Architecture Lifecycle
Architecture) LCA

– Construction (coding, introducing the Initial Operational Capa-
bilities IOC) IOC

– Transition (phase-change, responsible for Product Release RP) RP

168 11.9 User Centered Design: UCD

Figure 11.14: Intensity of the different RUP disciplines over the phases [39]

In this respect, RUP is an iterative-incremental approach to software
modelling. Figure [11.14] demonstrates which disciplines are relevant to
what extend in the different phases. For the different phases RUP defines
sets of activities to be carried out.

11.9 User Centered Design: UCD

The User/Human Centered Design UCD (EN ISO 9241) expresses this in
a more detail and defines the guidelines for human interacting systems (for
example a Web page. DIN EN ISO 9241-11 (Requirements for the Usability)Usability

Requirements provides three main criterion’s – depending on the usage contexts:

• Effectiveness: Precision and completeness, thus a user may realize aEffectiveness
particular objective:
May an average user realize the task by the system completely and
correctly ?
• Efficiency : The effort required by the user to fulfill his objectives withEfficiency

the expected precision and completeness:
May an average user realize the task with minimum efforts ?
• Satisfaction: Absence of impediments and a positive stance to use theSatisfaction

product:
Is an average user satisfied with the system ?

The usage context depends here on the user, his objectives, the tasks, the
available tools, and the physical and social conditions.

11.9.1 Usability Requirements for the User Centered Design 169

11.9.1 Usability Requirements for the User Centered Design

The standard DIN EN ISO 9241-110 does not only provide quality crite-
rion’s but in addition details requirements for the Usability :

• Task adequate: An interactive system can be considered task adequate,
if it supports the user to realize his tasks.

• Self descriptive: A dialogue is self descriptive, if the user at any time
obviously knows where in the dialogue he is, and how to execute the
current tasks.

• User Governance: The user is able to manage the interaction at any
time.

• Predictability: A dialogue is predictable in case the usage context
allows a recognition of the forthcoming actions and follows known
paradigms and conventions.

• Fault tolerance: A dialogue is fault tolerant if despite of user input
errors the purported aim can be achieved with minimal corrective ac-
tions.

• Customization: A dialogue is customizable, in case the user can mod-
ify the system-interaction and the display of information in order to
achieve a personal adoption.

• Recognition support: A dialogue supports recognition, in case it guides
the user to work with the interactive system.

11.9.2 Realizing User Centered Design

The realization of an UCD and in order to fulfil the quality and usability
criterion’s the standard DIN EN ISO 9241-210 demands a particular process
and methodology :

1. Analysis of the usage context

2. Definition of the requirements

3. Concept & design

4. Evaluation

170 11.10 Software Metrics

Figure 11.15: SW development requirements laid out by UCD

11.10 Software Metrics

Software Metrics is the approach, to define a measure for the given code (siz-
ing). The measure is typically an one-dimensional value based on a certain
method. The following methods are known:

• Number of Lines of Code (LoC), expressed as kLoC or MLoC.LoC
• Number or words, characters, and files.
• Number of functions or subroutines [51].Function Points
• Number of classes (for OO languages).Classes

Which measure we use, depends on the programming language. The
measure itself has to be unified, thus the same formula to determine the size
has to be used. The rational behind that measure is to correlate it’s value
with the behaviouristic behaviour of software development:

• Law of continuous change:
Once a Use Case is subject for a change, all relevant software modules
have to be changed.
• Law of growing entropy: During it’s evolution, the code becomes less

and less maintainable.
• Law of a statistical smooth growth:

A typical software project will produce a continuous and smooth growth
of the code base.
• Pareto’s law claims, that 20% of the code impacts 80% of the result.
• The law of the re-usability requires:

"Don’t solve any problem that has already been solved – check your

171

software repository for already existing solutions unlike develop them
again."

• The Parkinson’s law includes:
"Work expands to fill the available time."
"There’s always time to do the right projects, but there’s never time
to do them over." "Adding manpower to a late software project makes
it later."

• The Dr. Melvin Conway law predicts:
"Organizations which design systems ... are constrained to produce
designs which are copies of the communication structures of these or-
ganizations."

Table [11.3] provides a breakdown of the metrics for some E-Mail servers
systems under UNIX. Here, we can see, that these different measures provide
an estimate of the modularity of the systems.

Mail Transfer Agent Lines Words Characters Files

qmail-1.03 16.617 44.780 395.243 279

sendmail-8.9.1 55.059 179.376 1.229.121 54

zmailer-2.2e10 57.595 205.524 1.423.624 227

smail-3.2 62.331 246.140 1.701.112 151

exim-2.02 70.102 283.295 2.172.786 128

Table 11.3: Metrics for some UNIX Mail Transfer Agent

The most common approach for the software metric however, is to use
the LoC. Figure [11.16] shows the dependency regarding the development of
Windows NT.

172 11.11 Software Modelling and CASE Tools

Figure 11.16: Code enhancement for the Windows NT product family

11.11 Software Modelling and CASE Tools

In software design several distinct design documents are relevant:

• High Level Design document , describing the products functionality inHLD
a bird’s view, and the
• Low Level Design document , detailing the individual software compo-LLD

nents (and thus are also called Detailed Design documents).

In particular in Germany, the HLD is fed from the following input doc-
uments:

• Pflichtenheft – the agreed specifications between the customer and thePflichtenheft
software vendor/developer.
• Lastenheft – the requirement specification as provided by the customer.Lastenheft

The descriptions herein follow a formal modelling language and are pro-
vided in terms of charts. In order to produce the respective charts and to
make them consistent for a given software layout. CASE tools (ComputerCASE
Aided Software Engineering) are used in the design process. Today, three
different modelling languages are common:

• UML - Unified Modelling Language
• ERM - Entity Relationship Model
• SA/SD - Structured Analysis/Structured Design

173

The CASE tools allow during the modelling process the determination
of the dependencies of the software components. Thus, while deriving the
WBS structure, CASE tools and be efficiently used to support this evalua-
tion. Figure [11.17] shows a sample, how to model with the Eclipse plug-in
Together.

Figure 11.17: CASE modelling with Together [3]

174 11.11 Software Modelling and CASE Tools

175

Background, Exercises, Facts

The following Unix shell script provides for c and c++ programs a measure
for SW projects in terms of:

• Effective files – and herein –
• Used program words
• Program lines

Files can be nested in sub directories.

#!/bin/sh
NFILE=0
NWORD=0
NLINES=0

FILES=$(find . -name "*.c")
FILES="${FILES}$(find . -name "*.h")"
FILES="${FILES}$(find . -name "*.cpp")"

for FILE in $FILES
do

NLINE=0
WORDS=$(grep -v "^#" ${FILE} | cpp -fpreprocessed \

WORDS=$(cat ${FILE} | cpp -fpreprocessed \
| tr ’\\’ ’/’ \
| sed ’s/[_a-zA-Z0-9][_a-zA-Z0-9]*/x/g’ \
| tr -d ’\012’ | wc -c)

NLINE=$(cat $FILE | grep -v ^/ | grep -v ^$ | grep -v ^* \
| grep -v ^# | wc -l)

NLINES=$(($NLINES+$NLINE))
NFILE=$(($NFILE+1))
NWORD=$(($NWORD+$WORDS))
echo "File $FILE uses $WORDS program words and $NLINE code lines."

done

echo "A total of $NFILE files examined with $NWORD program words \
in $NLINES program code lines."

exit 0

176 11.11 Software Modelling and CASE Tools

<Name of the Use Case> <Version> <Date>

Author My Name

Brief Description

Primary Actor

Secondary Actor

Trigger, Predecessor

Event, Successor

Technical dependencies

Open items, Remarks

Step Actor Activity Junctions

1.

1.1

1.2

2.

Exception

Variant

Option

Table 11.2: Template for an Activity Table of a Use Case

Chapter 12

Software Quality and Defect
Management

Software projects (as part of IT projects) result in a piece of code which can
be

• directly installed executed on a particular Operating System (OS) plat-
form (like Windows, UNIX, MacOS) or can

• delivered in source code, requiring compilation and linking of the re-
spective programs prior of execution.

Regarding quality, the software has to fulfil particular requirements:

1. Usability : The software as to fulfil the defined tasks and the published Usability
use cases (’works as designed ’).

2. Conformance: The software has to comply to the published functional Conformance
aspects (’works as expected ’).

3. Absence of bugs: The software should be reasonable bug-free (’works Bug free
under all circumstances’).

4. Security : The software should neither directly nor indirectly impact the Security
security context of the user (’works without security impact ’), except
where explicitly stated.

5. Performance: If performance is not part of the Usability, the software Performance
should use as little system resources as possible and achieve maximum
performance (’works with little system impact and high performance’).

6. Maintainability : The software is easy to upgrade (’seamless upgrade Maintainability
possibility ’).

These goals can only be achieved

177

178 12.1 The Software test cycle

• by means of a qualified software design, which fits to the respective
tasks and considers the requirements,
• with a well-suited OS and perhaps necessary middleware,
• developing the software in a (quality) controlled environment with sup-

porting infrastructure, and
• by aid of a qualified defect tracking and documentation system.

On the other hand, the software quality is independent of the program-
ming language itself, and hence whether the code is actually executed via
an interpreter (script, macro), as byte-code (within a virtual machine), or
directly as binary (including OS loader statements). Of course, the choice
of the programming language has a substantial impact on the performance
(and occasional on security too). Figure [12.1] tries to outline the conflicting
attributes in software developments.

The chain:

Design/Planning =⇒ Coding/Development =⇒ Control/Improvement

is typically limited by budget and time-to-market conditions. Shortages
in any of those steps has a direct influx on the quality of the software product.

Figure 12.1: Conflicting attributes in software development

12.1 The Software test cycle

While testing software, we consider

1. White Box or structural tests.
Those are typically facilitated be the developer itself, who is knowl-
edgeable about his own code and the expected results.

2. Black Box or behavioural tests.
Those are derived from the respective Use Cases and poured into Test

179

Cases to be executed by a dedicated test team as part of the quality
plan QA.

3. Beta tests aka live tests at the customer site.
Different from the guided Black Box tests those are unconditional or
’ad hoc’ and thus reflect the customer’s behaviour and expectations.

The scope of the SW test is typically described by a phase model con-
sisting of:

• Unit or module tests
C programs (consisting of several functions) or a Java class is subject
of a functional White Box test, to determine it’s principal fitness.

• Component or sub-system tests,
consisting of several depending modules to be commonly White Box
or Black Box tested.

• Integration tests
are indispensable for complex SW projects and determine the the mu-
tual fitness of different components (and perhaps different vendors).

• Acceptance also called User Acceptance tests UAT
are the foundation for the commercial delivery of the product.

• Performance and regression tests
complement the integration tests with respect to the requirements met
in the purported production environment.

Figure 12.2: Simplified sequence of SW development and test phases

180 12.1 The Software test cycle

12.1.1 PMBoK: Software development, tests, and integra-
tion

The PMBoK provides a description of Work Units as laid out in the Work
Breakdown Structure WBS together with the structure of the teams in die
working groups.

Here, the quality planning is realized according to the relevant ISO stan-
dards. Specific requirements for the integration phase, however are not de-
tailed but in addition a dedicated Configuration Management is foreseen.

Figure 12.3: SW development according to PMBoK

12.1.2 Scrum: Software development, tests, and Integration

Within Scrum’s Product Backlog the functional and none-functional ele-
ments together with the usage conditions of the product/feature are included
in the User Story, while the detail design is carried out within a Sprints from
the team as port of it’s operational tasks.

Due to the required ’mixed’ competences of the Sprint team typically
only White Box tests are considered. Black Box tests are subject of another
Sprint. However, the team is responsible to realize and maintain it’s own
Integration environment.

181

Figure 12.4: SW development according to the Scrum model

12.2 Quality Standards and Requirements

Quality standards for the none-functional requirements as part of SW Engi-
neering have been investigated in since 1970, in particular by Barry Boehm,
who tried to realize those by means of specific SW development models.

While the functional requirements can be precisely defined already in the
SW design and realized while developing the SW and finally their imple-
mentation tested, deficiencies due to not caring about the relevant NFR are
typically found much later, and perhaps too late (when the product is finally
released).

Figure 12.5: SW quality criterion’s
according to Barry Boehm

Figure 12.6: Rôle of FR and NFR in
the development chain and attached
quality standards

182 12.3 SW Quality Management according to ISO 9000

One approach is, to define the NFR more precisely; another is to care
about their compliance in a canonical way already within the

development chain:
Continuous Integration.

12.2.1 FURPS Criterion’s

Software quality is often described accordingly to the FURPS criterion’s:

FURPS: Functionality, Usability, Reliability, Performance,
Supportability

The (withdrawn) standard DIN 66272 details those criterion’s:

Functionality

• Correctness
• Interoperability
• Compliance
• Safety

Reliability

• Maturity
• Recoverability
• Fault tolerance

Usability

• Understandability
• Learn ability
• Operability

Efficiency

• Responsiveness
• Resource usage

Changeability

• Analysable
• Modifiability
• Stability
• Verifiability

Portability

• Adaptability
• Install-ability
• Conformance
• Exchangeability

Table 12.1: Bouquet of quality criterion’s according to DIN 66272

This compilation (in particular the grouping) is not in accordance with
our current understanding, thus DIN 66272 has been withdrawn in 1994.

12.3 SWQuality Management according to ISO 9000

The standard ISO 9000-1 questions software quality for ’Information Sys-
tems" IS in chapter A.?:

• Management attention: Is there any IT Manager for the IS accountable
and responsible to define requirements and to approve changes?
• Quality Management System: Are all requirements for the IS explicitly

laid down in documents?

183

• Audits: Are all requirements accompanied by a description and how
to verify it’s conformance?

According to ISO 9000 high-level management attention the most im-
portant factor required for quality management.

The quality management system QMS itself can be viewed from an

(a) descriptive and
(b) from an operational perspective

as outlined in figure [12.7].

Figure 12.7: Set-up of a Quality Management System according to ISO
9000-3 [45]

The content of a QMS depends on the production branch described in QMS
the following ISO standards:

• ISO 9001: Standard for quality management in design, development,
production, assembly, and customer services.
• ISO 9002: Standard for quality management for production and as-

sembly.
• ISO 9003: Standard for quality management for final testing and con-

trol.

Thus for software development, ISO 9001 is the required standard and
demands continuous process improvements as shown in figure [12.8]:

The standard ISO 10013 provides in addition a lay-out of a Quality Man-
agement System (QMS) and emphasises the rôle of documentation in order
to achieve conformance with this standard (figure [12.9]).

While setting up a QMS according to ISO 9001, in fact one has to include
QM elements from the ISO standards 9001, 9002, and 9003. Thus, the final
QMS handbook has to have the following scope:

184 12.3 SW Quality Management according to ISO 9000

Figure 12.8: Quality Management for software development a) iterative pro-
cess improvements regarding quality b) constant improvements for develop-
ments by means of testing [45]

Figure 12.9: Hierarchy of a Quality Management System according to ISO
10013 [35]

Apart from assuring the quality management cycle for products, the con-
formance of the existing QMS has to be verified by means of Audits (ISO
9000-1). Audits are part of the ISO 9000 certification chain and may in-
clude:

• Content and conformance of the QMS handbook with the ISO stan-
dards.

• Operational conformance with the QMS handbook.

• Tests of the product quality.

• Capability of the project team to manage QM processes.

185

In Germany, some major organisation support the certification according
to ISO 9000:

• Deutsche Gesellschaft zur Zertifizierung von Qualitätssicherungssyste-
men (DQS)

• Deutsche Gesellschaft für Qualität (DGQ)
• Technischer Überwachungs Verein (TÜV)

12.4 Quality standards according to ISO/IEC 9126

Following the standard ISO/IEC 9126-1 a hierarchical quality model can be
considered to consist from the following components:

Figure 12.10: Definition of internal, external und quality in use according to
ISO/IEC 9126-1

In particular the Quality in Use is s sensitive measure of the NFR com-
pliance.

12.4.1 Quality as a Process chain – ISO/IEC 9126-1

The quality standard ISO/IEC 9126-1 requires a particular Process Model
thus the defined quality real reaches the User !

12.5 Software product Quality Requirements and
Evaluation – SQuaRE

The current standard ISO/IEC 2510 continues the ideas laid out in ISO/IEC
9126-1 (2001) and possess the same view on quality processes and quality
definitions but includes now explicit requirements for quality measures:

186 12.5 Software product Quality Requirements and Evaluation – SQuaRE

Figure 12.11: Internal and external criterion’s according to ISO/IEC 9126-1

Figure 12.12: Quality in Use criterion’s – ISO/IEC 9126-1

Figure 12.13: SW quality process chain – ISO/IEC 9126-1

• ISO/IEC 25010 2011-03 Software-Engineering
Quality criterion’s and Assessment of Software Products (SQuaRE) –
Quality Model and Guideline
• ISO/IEC 25012 2008-12 Software-Engineering

Quality criterion’s and Assessment of Software Products (SQuaRE) –
Model and Data Quality
• ISO/IEC 25020 2007-05 Software-Engineering

187

Figure 12.14: Quality criterion’s of the components – ISO/IEC 9126-1

Quality criterion’s and Assessment of Software Products (SQuaRE) –
Quality Measurement – Measurement Reference Model and Guidelines
• ISO/IEC TR 25021 2007-10 Software und System-Engineering

Quality criterion’s and Assessment of Software Products (SQuaRE) –
Elements of the Quality Measurement
• ISO/IEC 25030 2007-06 Software-Engineering

Quality criterion’s and Assessment of Software Products (SQuaRE) –
Quality Requirements

The scope of this standard includes on only the quality of software prod-
ucts but now in addition the quality of software systems are detailed in
addition with usage criterion’s for commercial products.

12.6 Defect Management

As outlined,

a defect is a deviation of a software component
from the documented behaviour and/or expected output.

12.6.1 Attributes of a Defect

For any defect, the following attributes can be assigned

• Source Source
The reason for a Defect could be:

– A programming error; commonly known as Bug.

188 12.6 Defect Management

Figure 12.15: Quality criterion’s according to SQuaRE

– A programming context error; the anticipated (software) func-
tionality works differently as documented/expected.

– A design error; the programmer realised the code accordingly to
the design, but this was inappropriate for the task.

– A documentation error; the software component reacts differently
with respect to the documented behaviour.

• PriorityPriority
In our today’s understanding, we use the following Priorities for the
defect fixing:

(-1) Showstopper; the defect needs to be fixed because it inhibits any
further testing or any potential use of the software component.

(1) The software component is inadequate or any use.
(2) The software includes severe deficiencies and may lead to substan-

tial deviations from the expectations.
(3) The software shows deficiencies but they can be compensated (by

work around).
(4) Less-relevant errors have been accounted, which are not important

for general use.
(5) Errors have been accounted, but are not mainly due to insufficient

documentation.

• CategoryCategory
Any Defect is assigned to a component Category. Occasionally, a soft-
ware module may include several components:

12.6.2 Defect Lifecycle 189

– User Interface (Input / Output)
– Middleware, Transport Layer, Interfaces/APIs
– Back-end (e.g. Database)

It is the responsibility of the software design to attach a certain com-
ponent to category, suitable for Defect tracking.
• Ownership Ownership

A defect is assigned for error-fixing to a particular Owner. In turn,
every software is developed and perhaps trigger by a certain person-
/team/ organisation/company. Thus, there should be a relationship
between Ownership of the defect and the Authorship of the software
component. Typically, Source Control Management Systems (SCM)
and/or Integrated Development Environment (IDE) will automatically
insert Author information taken from the user environment in terms
of a header.
• Versions Versions

Versionising the software component can be done explicitly by the de-
veloper or is automatically added by the SCM/IDE. Independent of
the components version, it typically is developed for and available in
a certain Release which provides a numerical (or verbal) identification
of the whole project.
• Project Project

A major software component or a set of components is typically iden-
tified as Project. Projects maybe subdivided in subprojects. However,
this depends on the WBS (in PMBoK terms) and can be freely chosen
in any software development project.
• State State

The state describes the recognition of the defect (whether it is new,
open or closed etc.) and it’s assignment state, as discussed in the defect
life cycle.
• Due-Date Due-Date

The expected date, when the defect shall be fixed (this depends on
priority).

12.6.2 Defect Lifecycle

For software development, essential part of the QM system is a bug-tracking
or Defect Management software. One of the most-common systems is Bugzilla
[47] (public domain). Typically, any Defect Management system uses a
database as back-end and a graphical (ie. Web based) front-end. Logically,
such a system allows us to define a Lifecycle for a defect. This Lifecycle can
be forged to our own needs, or follows a standard procedure. In practice,
companies may want to use one common system for Defect management and
as well for Incident and Problem management, since the Lifecycle idea is the

190 12.6 Defect Management

same. Such Trouble Ticket Systems allow a Class definition for the occurred
error to be reported:

• Defects – Software Development, Bug tracking
• Incidents – Deviations for a defined process (erratically behaviour);

(none-) recurring
• Problems – Set of (inter-depending) incidents with (known) common

source

In terms of Incidents and Problems not the Priority is of importance but
rather it’s Severity. Here, the correct routing (= assignment) of tickets is
most relevant. Such systems may be extended by an Artificial Intelligence
AI component with allows correlation of incidents, by time, location, and/or
source. In this way, incidents may automatically sorted and forwarded and
solutions strategies are proposed based on similar incidents or known (and
solved) problems. The State of a defect will be changed and reflects the
current actions on this defect. A minimal scheme could be the following:

In addition, it might be necessary to qualify the solution (or in software
development terms ’the fix’) in some more detail. Bugzilla uses the followingBugzilla
approach:

Transition changes among phases are not allowed to happen arbitrarily,
but rather depend on the life-cycle model in place. This can be expressed in
complex Defect State Charts as shown in figure [12.16]:

Figure 12.16: State chart for defects

191

12.7 QA reports

Quality Management or Quality Assignment Reports are generated regularly
(for instance every week) and includes essentially tow different reports:

• a statistical report, representing the defects per project/subproject in
terms of priority and component

• an individual report, focusing on the most important defects, while
provide a short description of its current state and forthcoming solution
strategies and due-dates.

Typically, a statistical reports is shown in terms of ’Lego charts’ allowing
a quick understanding of the project’s defect distribution in terms of priority
and component (figure [12.17]). In order to allow a quality measure, the
following analysis shall be done:

1. How many defects of priority X have been fixed since last report?

2. How many new defects of priority X have open since then?

Figure 12.17: Defect distribution in terms of components and priorities

One essential task of the Quality Manager is to gauge individual events
and bring them to attention. The following reasons could be considered:

• Showstopper : The defect impacts all other tests, since they depend on
it’s fix.

• Criticality : The defect inhibits the use of an important component and
the solution is critical for the whole project.

192 12.8 Estimating remaining Defects

• Due-Date: The solution for this defect has be postponed too often
and disturbs other developments.

Together with the head of development, the Quality Manager will re-
assess the defects and either require an intensified consideration of the defect
or perhaps re-prioritise it. The head of development will then re-assign and
re-schedule developers to potentially fix the defect.

12.8 Estimating remaining Defects

In particular in the advent of a forthcoming release, it is important to have
a quantitative estimate of the number of potential open bugs in the product
or perhaps per component. In case of qualified Quality Management system
and under the assumption that defects have been treated in a controlled
manner, we already have the following QA information:

• Distribution of the number of new defects in terms of priority and
components.
• Distribution the number of fixed defects in dependency of priority and

component.

What we don’t currently have, is

• the number and distribution of unknown defects.

It is most common for software development to allow within a ’release’ a
number less severe defects. This in turn requires an estimate of the number
of potentially remaining defects which have to be added to the number of
known bugs. The key here is to use additionally development information:

• Phase 1: In the beginning of the software project, the established code
base is small and bugs (even prio 1) happen often.
• Phase 2: While the development team becomes familiar with it’s tools,

the approach, writing a set common utility programs or classes, and
gathering more and more experience, development becomes stream-
lined and the code base grows proportional in time and in numbers
of developers. Watching this from the Quality Manager’s perspective,
quality increases and defects ’come and go’.
• Phase 3: However, coming close to a scheduled release, often develop-

ment realises that completion is behind the original schedule. Thus,
missing (but promised) functionalities have to be included in a rush.
The code basis will probably increase significantly.

Figure [12.18] shows a sample, where the development plan assumes code
completion happens accordingly to gaussian distribution, while real coding
is deferred by some δ in time.

193

Figure 12.18: Average code completion as scheduled (dashed), as realised
(solid)

In order to control quality and to consider the rapidly growing code base,
the Quality Manager has to correlate the number of defects with the actual
checked in code. For any software development it expected, that the number
of defects depends on the lines of code produced, expressed as ’Defects/kLoc’
(number of defects per 1000 lines of code). Thus, even with most advanced kLoc
QA means a certain number of bugs is be present and is acceptable. The
Quality Management Plan (QMP) will probably detail, what is the amount
of acceptable bugs and will provide a threshold (figure [12.19]).

Figure 12.19: QMP chart with an estimate of acceptable defects for the
scheduled release

Now, it is task of the Quality Manger to correlate the number of iden-
tified, fixed defects per kLoc and show this distribution on the same time
line. A qualified extrapolating (not necessarily linear) will yield a guess of
the number unidentified as shown in figure [12.19]:

194 12.8 Estimating remaining Defects

Figure 12.20: Estimation of unidentified defects for the final release

195

Chapter Title Requirements

ISO 9001 ISO 9002 ISO 9003

1. Responsibility of Management complete complete partially

2. Quality Management System complete complete partially

3. Contract Verification complete complete complete

4. Design Management complete not available not available

5. Management of documents and code complete complete complete

6. Ordering Management complete complete not available

7. Management of third party deliveries complete complete complete

8. Labelling and Tracking deliveries complete complete partially

9. Process Management complete complete not available

10. Test procedures complete complete partially

11. Verification of test tools complete complete complete

12. Status of tests complete complete complete

13. Management of missing products complete complete partially

14. Correction and preventive means complete complete partially

15. Usability, packaging, and deployment complete complete complete

16. Management of quality reports complete complete partially

17. Internal quality audits complete complete partially

18. Education and training complete complete partially

19. Maintenance and customer service complete complete not available

20. Statistical means and procedures complete complete partially

Table 12.2: Elements of a QMS document

196 12.8 Estimating remaining Defects

Category Scope Criterion Methods

internal Quality iQ Static code Correct + adequate
data-model and work-
flow; name space;
modularity; descriptive

Use cases; coding stan-
dards; design; quality
audits.

external Quality eQ Code execution Bug-free; functional
model; minimal depen-
dencies

Test cases; module test-
ing; QMS

Quality in Use QiU Usage Usability, productivity,
safety, performance,
maintainability

Release policy; defect
management

Table 12.3: Quality categories and their impact

Defect
State

Meaning

Unconfirmed The defect has been reported but has not been checked suc-
cessfully

New The defect has been reported, but yet not assigned and/or
verified

Assigned The defect has been assigned and forwarded to a responsible
developer

Reopened The defect was handled and closed, but requires further in-
vestigation/treatments

Resolved The defect has been solved and the solution requires approval

Verified The defect is solved and the solution was verified

Closed The defect is solved and the solution is integrated

Table 12.4: State of a defect according to Bugzilla [7]

197

Fix State Meaning

Fixed A bug-fix has been applied

Invalid The defect was no due to a bug; further information is re-
quired

Wontfix The defect can’t be solved under the current conditions
(time, budget)

Later The fix for the defect is deferred (next release/version/up-
date)

Remind No fix will be provided now, but considered for a forthcoming
version

Duplicate The defect is a duplicate of another one

Worksforme The defect can not be reproduced in the developer’s envi-
ronment

Table 12.5: State of a defect fixing according to Bugzilla [7]

198 12.8 Estimating remaining Defects

Chapter 13

Continuous Integration

13.1 Why (Continuous) Integration ?

Lessons learned:

• In particular regarding ’big’ projects, the amount of code develops not
continuously, but rather in significant steps (’the due date problem’).

• Also, SW modules which were initially planned to be be developed
independently are recognized to be (tightly) coupled and providing
significant dependencies:

– One developer checks code out from repository, modifies it and
checks it in and commits. Checkins &

Commits– Other developer from different groups do the same with their
code-base without realizing the dependency.

As a result, the entire code diverges and at the end of the development
period, no common compilation is possible → Showstopper !

Solution:

• Continuous Integration is required to understand and disentangle those
dependencies at the earliest stage.

• Following the approach of periodical ’nightly builds’ the code modules
are checked for consistency.

– In case the code is able to be compiled at a whole and validat-
ed/tested in a further step, development can carry on.

– However, facing problems while compiling or validating the code,
the dependencies can be early identified and corrections may take
place.

199

200 13.2 Development and testing Environments

Figure 13.1: Procedure of Continuous Integration

This is accomplished by automatic build tools known as ’Hudson’ and
’Maven’.

Instead of the ’nightly builds’ the code can be compiled and validated
’on-the-fly’ at every commit of a developer.

13.2 Development and testing Environments

In order to support the software quality management cycle, as part of the
QMP different environments are usually used and referred to. Now, what
is a environment? If common resources, including operating system, middle-
ware (database), and other required applications a dedicated and configured
for a dedicated task, we can refer his as environment. Typically, the following
environments are used and configured for larger software developments:

• Development environments:DEV
This includes in particular any required compiler and linker, Integrated
Development Frameworks, and Source Code Control Systems. At least
one specific development environment is required for Release Manage-
ment.
• User Acceptance Test environments:UAT

The (system) test environment’s reflect closely, but on a smaller scale
the later production environment; specific tools for software tests and
quality management may be available. Here, the final quality approval
will be carried out.
• Integration Test environments:INT

In case third party systems need to be included, one particular UAT
can be used as Integration Test environment.

13.2.1 Infrastructure for the Continuous Integration 201

• Reference environments: REF
This environment should be sized and configured comparable to the
production environment. Here, performance and regression tests can
be performed. Occasionally, the reference environments can be used as
backup and fail-over systems for the production.

• Production environments: PROD
Full sized production environment. Different from UAT, additional
hardening could have taken place. Their impact has to be figured out
in the reference environment.

13.2.1 Infrastructure for the Continuous Integration

In order efficiently use Continuous Integration the developer team (or parts
of it) needs to set up an own CI environment, consisting of the following
system components:

• The Content Management System CMS taking care of the project’s CMS = VCS
source code. Whether a central repository (like SVN) or a ’virtual’
distributed database à la Git is used, does not matter.
• The particular CI server, interacting with the CMS while fetching

those pieces of the code labelled to be used for Integration.
The Integration is facilitated by mean of build tools. These may be Build tools
simple scripts (for instance the C Makefile utility) or complex and
powerful SW tools, to be used mainly for Java projects, like Maven
or Jenkins. The CI is additionally used to generate the reports as a
result of the builds and tests.
• The Configuration Management Data Base CMDB, which describes CMDB

and manages the code pieces and the accompanying parametrisation.
• A Web server used to visualize and deploy the results to the developer

and in particular the quality manager.

13.3 Requirements for the Team applying Contin-
uous Integration

In order to setup Continuous Integration in automatic manner, the team is
required to prepare the input of the input of the CI system:

• The SW developers need to check in the code into the CMS with
significant information:

– Any used public function needs to described.
– The name space conventions in order to declare functions, classes

and variables are obligatory.

202 13.3 Requirements for the Team applying Continuous Integration

Figure 13.2: Process chain of Continuous Integration

– The coding style guides need to be followed.
– The size and complexity of functions shall not exceed a critical

limit.
– A useful internal description of the SW components is required,

which can be extracted automatically.
– The developers need to check-in additionally the Makefiles to

compile their components.

• The CI Server managers are responsible to streamline and monitor
the automation process:

– Technical problems of the build process need be be detected, anal-
ysed, and fixed.

– The response of the build process, the build state needs to be
communicated in a verbose way to the developers.

– The CI staff members support the developers in case of build
breaks.

– The build results are documented and forwarded to the quality
manager.

Additionally, the SW developers are required to create together with the
CI managers automated tests which allow to verify the principal fitness of
the compiled modules.

203

13.4 The Build Process

The developers will maintain and develop the code according to the releases.
In a VCS, the developers can maintain a ’view’ of the particular releases.
Software modules are checked in and checked out against a certain release.
Thus we have to consider two distinct logical views:

• The Branch – this is a logical order software modes in the software Branch
repository, the VCS, common for all users.
• The View – this is the workspace of the developer; a view may consist View

of different branches.

It is the requirement of the Release Manager to determine when the Release Manager
current branch (see figure [13.3]) should be forked, thus a new (development)
release is due. This decision impact the consistency of the code base:

• In case of a too early branch, often changes in the old branch have to
applied to the new branch.
• In case of a too late branch, development capacities are still focused

on the old release, thus the new release may be delayed.

Branching

Release Management has to realise, that each release (=branch) has its
own SDLC, thus generally, any branching should be avoided. Of course, this
binds resources and causes efforts, perhaps not planned initially.

Figure 13.3: Branching into different releases in the VCS [20]

As a consequence, the developer may occasionally modify modules in a
wrong branch, since this information is typical not visible for the developers,
since they are assigned to a particular release/branch. It is the obligation of
the Release Manager or head of software development, first to communicate
with the developers regarding the release schedules and second to correct
wrongly checked-in modules (figure [13.4]).

204 13.4 The Build Process

Labelling

All software components which should be included in the release are
labelled. Effectively, even modules can be labelled for a certain release, which
belong to a different branch.

Figure 13.4: Including a changed module into a specific branch

Merging

tbd.

13.4.1 Building for Continuous Integration

As already mentioned, the build process might be either run

• continuously and been automatically triggered by the commitment of
a module, or
• as ’nightly build ’ at the end of a developer’s day.

The result of a build could be one of the following cases:

1. Success: Compilation and the automatized tests have been completed
with no error/warning.

2. Warning: During compilation errors have been encountered, or same
validation steps could not been passed successfully.

13.4.2 Fixing errors within Continuous Integration 205

3. Incomplete: The CI build process did not finish in time; perhaps be-
cause of the size of code or the dependencies, which were needed to
disentangle in the first place (configure).

4. Error: Due to critical errors the CI build failed =⇒ Build Break!

Build Breaks delay the entire development process and impact the entire
development/quality process substantially.
After a Build Break has been realized, no new code shall be committed until
the reasons have been identified and the build process was recovered.

13.4.2 Fixing errors within Continuous Integration

Since the problems of Microsoft’s project ’Longhorn’ (aka Windows Vista)
became public known, Continuous Integration is in the focus of developmen-
t/quality management for SW projects.

In case of problems during the build process, a particular strategy is
required:

• Private Builds: In this case, not the entire system is build, but rather
a certain developer or developers group’s component are subject of the
Integration test, what is called Pre-Test Commits.
• Broken Builds: Now the developer team needs to put it’s entire at-

tention to identify hat piece of (new or changed) code which triggered
the build failure. Probably a Roll-Back to on older version might be
helpful.

• Mockups: Instead of the error-prone components, dummy routines
called Mocks or Mockups can be used instead to at least finish the
Integration tests.

13.5 Continuous Delivery

Continuous Integration is an important step towards the final release of the
SW product, the deliverable respectively:

• In addition to the integrated, automatized tests, further (external)
quality tests according to the Quality Plan QP are required.
• Typically, adjacent Alpha and Beta tests are scheduled.

Is the SW product subject to be delivered to the product owner once the
CI build was successful, we call this Continuous Delivery.

206 13.5 Continuous Delivery

Figure 13.5: Use case for using Mockups instead of the real code

Chapter 14

Release and Roll-out
Management

Given an IT Software Project, we can consider Release Management to be
that management discipline which is closest visible for the customer – and
impacts him most important. While preparing this script a ’race’ is ongoing
about the next generation Web Browser among the combatants Microsoft’s
IE7, Firefox 3, and finally Opera 9.5 (Apple’s Safari does not play a rele-
vant rôle under Windows). This order reflects the market shares, however,
the release order is inverted, and reflects probably the pressure from the
marketing department (figure [14.1]). Despite of this Release and Roll-Out
Management is not directly covered by any Project Management Framework,
however it is defined as ITIL Service Management process. Often, Release
Management is considered as part of Change Management, though this does
not cover the complexity of the Release Management process entirely.

207

208 14.1 Release Management à la ITIL

Figure 14.1: Release Management as key discipline for customer satisfaction

14.1 Release Management à la ITIL

Release Management is of part of ITIL’s (IT Infrastructure Library) Service
Management Functions as shown in figure [14.2]. According to ITIL’sSMF
understanding Release Management is required for

• the introduction of substantial and critical hard changes,
• the deployment of relevant software,
• bundling complex and interdependent changes.

The Release Management has the task of co-ordinating the Service Providers,
delivering companies, and other involved third parties in order to integrate
all products subject for deployment and complement them with the required
documentation and perhaps training.

Figure 14.2: ITIL Service Support Management Functions (SMF)

209

A central concept of ITIL is the Definitive Software Library . This serves DSL
as repository for the code, while configuration parameters are stored in the
Configuration Management Database . Note, that the DSL is not equivalent CMDB
to the database of our Source Code Management System and the CMDB VCS
is not the same as our Document Management System. The release process DMS
has to be guided by some principals of conduct. In particular, the rôles of
the different involved parties (figure 88) have to be clearly defined and the
responsibilities of the Release Management have to be expressed (see figure
[14.1]).

Figure 14.3: Dependencies of the Release Management with other manage-
ment disciplines

Regarding ITIL, the main tasks of the Release Management are:

• Planning and supervision of roll-outs considering any changed hard- or
software, including all relevant documents.

• Alignment with Change Management regarding the contents of the
release and a detailed rôle-out schedule.

• Responsibility that all products subject for release are available and
are registered as entries in the CMDB.

• Providing release information for customers in order to prepare the
acceptance of the products and to shape the expectations.

Concerning the forthcoming release, ITIL recognises the following release-
types:

• Full Release: All components have been commonly developed, tested, Full Release
deployed and implemented.

210 14.2 Release Management Overview

• Delta Release: Only particular changes, encountered since the lastDelta Release
release are considered .
• Package Release: Is a release superset, including different productsPackage Release

(even third party) and full or delta releases.

ITIL does not consider software development and quality management
explicitly in it’s functional model, however makes the following recommen-
dations:

• Build Management
The soft- and/or hardware subject for a release have to ’build’ in a
consistent manner, allowing a reproducible processes. Some processes
have to be automated in order to improve consistency and to minimise
human mistakes. As soon, as the test-phase starts, Build Management
should be the responsibility of Release Management.
• Test Procedures and Fall-Back Strategies

Any release has to be carefully tested, prior of the approval, the user
acceptance has to be verified. In addition. Fall-back strategies and
plans have to be prepared, documenting what steps are required, in case
the release and/or the final deployment is error-prone. The fall-back
strategies and plans have to be tested in the reference environment.

14.2 Release Management Overview

Alternatively to ITIL’s approach within Project Management we can con-
sider Release Management as part our quality approach and thus belongs
to Quality Management (see figure [14.3]). While Quality Management in-
terfaces with development, Release Management interfaces mainly with the
customers.

Figure [14.4] shows the dependencies between Release Management, Soft-
ware Development, Quality Management, and Change Management. We
identify, that Release Management is an essential part of the Software De-
livery Life Cycle .SDLC

• Change Advisory BoardCAB
Typically, the Release Manager is member of the Change Advisory
Board CAB. More complex releases (i.e. an Operating System) will
probably employ different Release Managers for the different prod-
ucts subject to release. Other members of the CAB are the Quality
Manager(s), the head of Software Development, and perhaps represen-
tatives (bridgeheads) of other companies, in case of third party soft-
ware/hardware.
• Software Development

While software development can be facilitated according to the mod-

211

els as discussed in the previous chapter, the Release Manager has fi-
nally to identify each software component to be included in the final
release. Probably within the software development department, some-
body maintains the content of the Source Control Management System
. The last step of the development process is to label in the VCS the in- VCS
dividual components and modules. The Release Manager and the head
of Software Development have the common responsibility to ensure the
completeness and the consistency of the release.

• Quality Assurance
The main part of the quality management process belongs to the soft-
ware development phase or stage. However, the Quality Manager plays
an import rôle to guarantee the absence of major bugs in the release.
Unfortunately, a 100% bug-free delivery is almost impossible and thus
the Quality Manager has in the advent of a forth-coming release al-
ready to prepare resources to support post-release bug-fixing.

Figure 14.4: Release Management steps from design to final release

A special case has to be considered if the software product will be de-
ployed on different systems, ie. levels of the OS or other potentially impact-
ing causes. Here, software development and quality management can decide
to use a controlled field test, typically known as ’beta tests’ in contrast to
the in-house ’alpha tests’.

212 14.3 Release Planning

14.3 Release Planning

Release Planning is different with respect to the initial release and the forth-
coming releases. The release initiators and the context for next release in
addition with the release request type are summarised in table :

Initial Release:

Even before the first modules are coded, Release Management should
define how releases are identified and how the releases are realised in the
VCS. Thus choice of the VCS and it’s capabilities determine to some extend
the flexibility of the release process. The Identification of a release can be
quite difficult and is a little bit arbitrarily. Initially we have the following
information:

• The Version of the different software modules; either provided the VCSVersion
or by the software author him/herself.
• The Version(s) and perhaps Release(s) of external components whichRelease

have to bundled with the current release.
• The Build Number of the VCS which labels a particular configura-Build Number

tion or counts the steps for compilation/linking, thus to generate the
executable modules.

For efficient defect tracking all these information have to be included in
the Configuration Management Database and are now commonly referred toCMDB
as ’Release’. In order to support the SDLC, we typically use the following
hierarchical scheme:

• Major ReleaseMajor Release
• Minor ReleaseMinor Release
• FixlevelFixlevel

and assign a number to a particular release 2.7.18.
As discussed above, a Minor Release could be realised as Delta Release

and will only install against a particular Major Release. Occasionally, this
is also called a V.R.F. scheme, with V = Version, R = Release, and F =V.R.F
Fixlevel. In this way, we can preserve the logic and the dependencies of
the software development.

In addition, it might be useful to include a Delivery Information as well.
In some cases, the delivery information is appended by a dash ’-’ or under-
score ’_’ sign. For instance a release could be introduced as 1.2.0_02, telling
the customer that this is the second (’02’) delivery of release 1.2.0. While
the code base shall be the same for 1.2.0 and 1.2.0_02, maybe because some
packaging errors occurred, or because extra documentation has been added
a first and second delivery is necessary.

213

Rôle Context Release Entry
Point

Release request type

Senior
Executive

Discussions of
largest grained
needs. Final
association of most
serious issues
ideation of
exploration.

Senior IT
Leader

Usually personal interac-
tions and unstructured
documents (emails, pre-
sentations, etc.).

Request for information
(RFI).

Starts with personal in-
teractions and moves into
process driven.

Requests for major
new systems. Large
project level.

IT CRM RFP - Request for Pro-
posal.

Unit
Executive

Requests for
major new
systems. Large
project level.

RFC (high level) Request
for Change.

Demand Man-
agement System

Starts as process-driven
demand request or RFC

Functional
area owner

Requests for new
systems, additional
functionality

Demand Man-
agement System

Starts as process driven
demand request or RFC.

IT Service Re-
quest System

Development require-
ments.

User

Requests for
orderable IT
Services Reporting
of Incidents

Incident Man-
agement System

Process driven for ser-
vice requests, reporting
requests, Incident reports,
or Change RFCs (opera-
tional)

Change Man-
agement System

Management system.
New system requirements.

Table 14.1: Releases Sources and Initiators [13]

Further, some companies tend to include the Build Number in the release
information (i.e. for the Windows NT OS while preserving a descriptive name
for the development). Other companies use additional names to a specific

214 14.4 Code and Patch Management

release (i.e. Apple for the OS X - Panther: 10.3, Tiger: 10.4, Leopard 10.5).

Further Releases:

The release planning for the forthcoming releases is mainly triggered from
four sides:

• Market : Marketing has identified a set of requirements and ’trends’ to
follow.
• Customers: The customers report defects and express need for addi-

tional functionalities.
• Quality Management : The open defects in the previous release needs

additional fixes.
• Technical Progress (Development): Changing standards have to be in-

corporated into the next release.

Here, we have to consider two main processes:

• RFP – Request For ProposalRFP
will typically include an initial definition for additional requirements
• RFC – Request for ChangeRFC

are issued by the Change Manager and need approval by the Change
Advisory Board CAB. All realised changes need to be documented.
Prior for the next development round the Change Advisory Board has
to digest the requested changes for the product and finally decide what
to include into the next release. Changes have to be identified by
module and impact. Apart from the sizing, they are also prioritised.

Thus, the release plan will include a development timeline, where changes
are well defined for the next releases but will become more and move vague.

14.4 Code and Patch Management

Code and Patch Management is a task of Software Development, however
during a release build, the Release Manager needs to audit this process.
Typically, it is the software developer who modifies the code on it’s own
behalf. In particular for Open Source projects, code changes will also arrive
by external developers or users. In addition, field engineers may change the
code on customer demand, in particular to fix a problem. Changes to the
source code or the executable module which modify the execution are called
Patches. In case the patch is realised against the executable program, it
needs to be re-engineered and included into the streamline.

Code changes and patches which impact the functional behaviour of any
module (and thus do to fix a defect) have to consider four different issues:

215

• What is the reason for the code change ?

• Who is the maintainer of the code ?

• To which version of the software do we need to apply the change, thus
in what release should the enhancement/change be incorporated ?

• Does this change impact Use and/or Test Cases ?

Figure [14.5] shows the inclusion of patches into the development cycle
until final inclusion.

Figure 14.5: Patch Management Cycle [13]

14.5 Quality Assurance

The strong dependencies between Release and Quality Management can be
depict from figure [14.6].

216 14.5 Quality Assurance

Figure 14.6: Quality Assurance from the idea to the release

As discussed, both the Quality Manager and the Release Manager have
to be prepared about the remaining defects in the current release. Figure
[14.7] shows on a time line the ’creation’ and fixing of defects. By means of a
good quality management system, most defects can be corrected before the
actual product comes into operation. Most probably, fixes for the remaining
defects are scheduled for the next (minor) release. However, it might be
necessary to deploy important bug fixes in a particular Hotfix release. There
exist different opinions about Hotfixes. Occasionally, they are part of the
standard release cycle or they are real ’hot-fixes’ required for special cus-
tomer problems/issues. Important is the recognition of a hot-fix for further
enhancements. Typically, hot-fixes are ’stand-alone’, where as in particular
any minor release will recognise the existing installation base and update
this respectively.

217

Figure 14.7: Defect appearance and fixing during the development and test
cycle

14.6 Release Readiness

Declaring Release Readiness is responsibility of the Release Manager. How-
ever, the final approval is done by the Change Advisory Board. Depending
on the current state of completion and defects, the CAB may conclude to
issue a Release Candidate (RC) prior of the final release (figure [14.8]). The
Candidate build may be issued to:

• the QA department

• the public or interested customers/users.

While the QA can determine the readiness according to a well-defined
environment, a ’public RC’ does not; however it can be used to gather ex-
perience and perhaps to identify design problems, not recognised yet.

218 14.7 The Roll-Out Process

Figure 14.8: Building Release Candidates

14.7 The Roll-Out Process

The Roll-Out process may include several software and even hardware prod-
ucts. For example, today’s OS are couples with email-systems, web-browsers,
text-editors, multi-media-software and other ’gadgets’. Thus within the roll-
out process different products need to be bundles as part the Release Man-
agement. Additionally, the Roll-Out process has to include the required
release documents. Depending on the product and the targets may include:

• Installation documentation
• Release documentation
• User manuals
• Administration guides

Once the roll-out is prepared, the medium for the roll-out has to be set-
up. While ’in the old days’ software releases are shipped on diskettes or CDs,
nowadays, everyone accepts downloads from a particular Download Server.
In any case, it has to be verified by the Release Manager, hat the required
resources are available

Chapter 15

Summary

The previous chapters covered most of today’s understanding of IT Project
Management. We have seen, that a few general Project Management Frame-
works do exist, in particular PRINCE2 and PMI’s PMBoK which are gener-
ally used and well suited for the management of IT Project. In addition, IT
Projects use IT specific tools which are generally not covered by the general
frameworks.

While most aspects of project management can described and successfully
applied by the means discussed in the previous chapters, the risk manage-
ment is certainly the most challenging part of the operative project manage-
ment.

While there is a general discussion, whether project management is a
part of a general risk management, or risk management is a specific aspect
of project management, regarding IT project two different ’incarnations’ of
risks have to be considered and dealt with:

1. Intrinsic risks due to the new technology (applicability).

2. Risks due to missing quality (usability).

While IT provides to means to estimate and reduce (2.), the intrinsic
risks can only be covered by ’traditional’ project management; thus needs a
qualified Project Manager and this ability to ’sense’ those risks and to cope
with them.

15.1 The Project Management Timeline

Close to the PRINCE2 approach, I have subdivided the IT project into four
phases:

Figure [15.1] shows the particular tasks assigned to the different phases
(without claiming to be complete) in terms of ’project devil’s two-sided fork’.
We see, that during the execution phase, the two particular management
aspects become vital:

219

220 15.2 Linking Project Management with SW Product Development

Phase Project tasks Product development

1 Initiation Setting up & circumstances Idea & scope

2 Planning Project planning Requirement analysis, draft design

3 Execution Operation & Controlling Implementation, testing, integration

4 Termination Closure, decommissioning Release, roll-out

Table 15.1: The four phases of project management and SW development

• Operative Management (day-by-day management)
• Management by Controlling

15.2 Linking Project Management with SW Prod-
uct Development

In the previous chapters I have detailed the inter-relationship between gen-
eral Project Management with the particular SW Development and it’s re-
quirements.

Typical for IT projects is a substantial amount of Product Management :

• Requirement Analysis
• Specification
• Design (high and low level)
• Implementation (coding and integration)
• Testing (module and system)
• Release and perhaps
• Roll-Out

Companies focused on projects with a high degree of SW development
have tailored their ’production chain’ to cope with these conditions. A cen-
tral component is the Quality Management touching both project manage-
ment and product development [15.2]

This complex environment results in addition into a dedicated task shar-
ing of responsibilites between several (Project) managers, which is common
sense for larger projects.

221

Figure 15.1: ’Project devil’s two-sided fork’

15.3 Open Issues

While the further chapters covered the issues of IT Project Management to
some detail, still some missing subjects have to be addressed:

• Software Design and Implementation
I only mentioned modern paradigms of software design and develop-
ment briefly. Currently discussed are in particular ’design patterns’,
among others. Many of those issues only become relevant in a par-
ticular development environment, typically the the context of OO and
Java development.

• Programme Management
The coordination of several ongoing projects needs a particular steering
which is called ’Programme Management’ and/or perhaps ’Portfolio
Management’. Though within the PRINCE2 approach Programme
Management is mentioned, in practice a lot more specific requirements
need to meet.

222 15.3 Open Issues

Figure 15.2: The principal ingredients of IT Project Management; iQ: inter-
nal Quality, eQ: external Quality, QiU:Quality in Use, NFR: None-functional
Requirements, QMP: Quality Management Plan, QA: Quality Assurance

Chapter 16

Project Artifacts

16.1 Project Initiating Statements

Project basic facts

Project’s name:

Name of Project Manager:

Stakeholder of Project:

Accountable/Approved by:

Estimated duration of Project:

Expected Milestones:

Table 16.1: Project’s Mission Statement

223

224 16.1 Project Initiating Statements

Business Statement

Is situation: Problem statement,

Outcome: Achievable aims; current, proposed

None-aims of project: out-of-scope issues

Expected usage: For whom ? What ? How far ?
Strategic ?

Impact in case of failure:

Table 16.2: Project’s Business Statement

Ressource Estimation

Human Resources Expenditures (days and Euro): Operational Expenditures (OpEx): Capital
Ex-
pen-
di-
tures
(CapEx):

Remarks

.

.

.

.

Table 16.3: Resource Estimation

Chapter 17

PMBok English/German
Glossary

Abbreviation English Term German Terminology

AC Actual Cost Ist-Kosten

ACWP Actual Cost of Work Per-
formed

Ist-Kosten der geleisteten Ar-
beit

AD Activity Description Beschreibung des Vorgangs

ADM Arrow Diagramming Method Vorgangspfeilnetzplan

AE Apportioned Effort Zugeteilter Aufwand

AF Actual Finish Date Tatsächlicher Endzeitpunkt

AOA Activity-on-Arrow Vorgangspfeilnetzplan

AON Activity-on-Node Vorgangsknotennetzplan

AS Actual Start Date Tatsächlicher Anfangszeit-
punkt

225

226 CHAPTER 17. PMBOK ENGLISH/GERMAN GLOSSARY

Abbreviation English Term German Terminology

BAC Budget at Completion Ursprünglich geplante
Gesamtkosten

BCWP Budgeted Cost of Work Per-
formed

Fertigstellungswert

BCWS Budgeted Cost of Work
Scheduled

Budgetkosten der geplanten
Arbeit

BOM Bill of Material Stückliste

CA Control Account Kontrollkonto

CAP Control Account Plan Kontrollkontenplan

CCB Change Control Board Steuerungsgremium für Än-
derungen

COQ Cost of Quality Qualitätskosten

CPF Cost-Plus-Fee Selbstkostenbasis plus Hono-
rar

CPFF Cost-Plus-Fixed-Fee Selbstkostenbasis
plus Pauschalbetrag
(Werkverträge)

CPI Cost Performance Index Kostenentwicklungsindex

CPIF Cost-Plus-Incentive-Fee Selbstkostenbasis plus Leis-
tungshonorar (Werkverträge)

CPM Critical Path Method Methode des Kritischen Wegs

227

Abbreviation English Term German Terminology

CPPC Cost-Plus-Percentage of Cost Selbstkostenbasis plus
prozentualer Kostenanteil
(Werkverträge)

CV Cost Variance Kostenabweichung

CWBC Contract Work Breakdown
Structure

Vertragsgegenständlicher Pro-
jektstrukturplan

DD Data Date Datum des aktuellen Stands

DTA Decision Tree Algorithm Entscheidungsbaum-Struktur

DU/DUR Duration Dauer

EAC Estimate at Completion Erwartete Gesamtkosten zum
aktuellen Zeitpunkt

EF Early Finish Date Frühester Endzeitpunkt

EMV Expected Monetary Value Erwarteter Geldwert

ES Early Start Date Frühester Anfangszeitpunkt

ETC Estimate to Complete Erwartete Restkosten zum ak-
tuellen Zeitpunkt

EV Earned Value Fertigstellungswert

EVM Earned Value Management Management des Fertigstel-
lungswertes

EVT Earned Value Technique Fertigstellungswertmethode

FF Finish-to-Finish Endfolge

228 CHAPTER 17. PMBOK ENGLISH/GERMAN GLOSSARY

Abbreviation English Term German Terminology

FF Free Float Freie Pufferzeit

FFP Firm-Fixed-Price Festpreisbasis

FMEA Failure Mode and Effect Anal-
ysis

Fehlermöglichkeits und Ein-
flussanalyse

FPIF Fixed-Price-Incentive-Fee Festpreisbasis plus Leistung-
shonorar

FS Finish-to-Start Normalfolge

IFB Invitation for Bid Ausschreibung

LF Late Finish Date Spätester Endzeitpunkt

LOE Level of Effort Unterstützungsfunktion

LS Late Start Date Spätester Anfangszeitpunkt

OBS Organizational Breakdown
Structure

Organisationsorientierter
Strukturplan

OD Original Duration Ursprüngliche Dauer

PC/PCT Percent Complete Fortschrittsgrad

PDM Precedence Diagramming
Method

Vorgangsknotennetzplan

PF Planned Finish Date Geplanter Endzeitpunkt

PM Project Management Projektmanagement

PM/PL Project Manager/Leader Projektleiter

229

Abbreviation English Term German Terminology

PMBOK Project Management Body of
Knowledge

Project Management Body of
Knowledge

PMIS Project Management Informa-
tion System

Projektmanagement Informa-
tionssystem

PMO Program Management Office Programmmanagementbüro

PMP Project Management Profes-
sional

Project Management Profes-
sional

PO Project Office Projektbüro

PS Planned Start Date Geplanter Anfangszeitpunkt

PSWBS Project Summary Work
Breakdown Structure

Übersichtsprojektstrukturplan

PV Planned Value Geplanter Wert

QA Quality Assurance Qualitätssicherung

QC Quality Control Qualitätslenkung

RAM Responsibility Assignment
Matrix

Verantwortlichkeitsmatrix

RBS Resource Breakdown Struc-
ture

Einsatzmittelstrukturplan

RBS Risk Breakdown Structure Risikostrukturplan

RD Remaining Duration Verbleibende Dauer

RFP Request for Proposal Angebotsaufforderung

230 CHAPTER 17. PMBOK ENGLISH/GERMAN GLOSSARY

Abbreviation English Term German Terminology

RFQ Request for Quotation Angebotsanfrage

SF Scheduled Finish Date Geplanter Endzeitpunkt

SF Start-to-Finish Sprungfolge

SOW Statement of Work Leistungsbeschreibung

SPI Schedule Performance Index Terminentwicklungsindex

SSD Scheduled Start Date Geplanter Anfangszeitpunkt

SS Start-to-Start Anfangsfolge

SV Schedule Variance Terminplanabweichung

SWOT Strengths, Weaknesses, Op-
portunities and Threats

Stärken, Schwächen, Chan-
cen, Risiken (SWOT-Analyse)

TC Target Completion Date Vorgegebener Abschlusszeit-
punkt

TF Target Finish Date Vorgegebener Endzeitpunkt

TF Total Float Gesamte Pufferzeit

T&M Time and Material Zeit und Material (Dienstleis-
tungsverträge)

TQM Total Quality Management Total Quality Management

TS Target Start Date Vorgegebener Anfangszeit-
punkt

VE Value Engineer Wertgestaltung

231

Abbreviation English Term German Terminology

WBS Work Breakdown Structure Projektstrukturplan (PSP)

Table 17.1: PM Glossary [41]

232 CHAPTER 17. PMBOK ENGLISH/GERMAN GLOSSARY

List of Figures

1.1 a) The Cheops Pyramid in Gizeh; b) Achet Chufu = Horizon
of Chufu (Cheops) [49] . 12

1.2 Cathedral of Cologne before (left) and after (right) finishing
the South Tower [53] . 13

1.3 Projects managed with Project Management support [24] . . 15
1.4 Framework for Project Governance setup 16
1.5 Elements of Project Management [24] 17
1.6 St.-Johann-Bapist Church victim of today’s (none existing)

Project Management [Der BauUnternehmer] 19
1.7 Collapse of Cologne’s Municipal Archive building in March

2009 due to civil construction (drilling) for the new subway
line [32] . 20

1.8 Civil construction site at the ’Heumarkt’ where 85 % of the
supporting metal frames where stolen by local workers [36] . . 20

2.1 Project Manager’s Questionnaire to upper Management [33] . 24

3.1 Dependency triangle for project targets 34
3.2 Chaos 2004 Survey Results [18] 35
3.3 Return-on-Investment calculation [24] 36
3.4 Sources for conflicts in projects [24] 37
3.5 Magical Triangle of Project Management [24] 38
3.6 Success factors for efficient project management [46] 39
3.7 The role of the Quality Management Centre as Hub 41
3.8 Supertramp: Crisis? What Crisis? 44

4.1 Complementation of Leadership and Organization in Project
Management [24] . 52

4.2 Project Management concept according to System Engineer-
ing (SE) principals and guidelines [24] 52

4.3 Determinants of Project Management [10] 53
4.4 A systemic approach for complex systems [10] 54
4.5 Team building foundations [24] 55
4.6 SEI’s People Capability Maturity Model [1] 56

233

234 LIST OF FIGURES

4.7 Typical set-up of a project’s RACI matrix 58
4.8 Structure of IBM’s WSDDM model [42] 60
4.9 Correlation between group cohesiveness and productivity [11] 60
4.10 Reporting project activities in a Time Sheet [40] 63

5.1 The Project Management Circle [46] 67
5.2 Setting up a project plan [24] 69
5.3 Evolution of the Project Plan during the project’s execution

[24] . 70
5.4 Internal and external dependencies of a project [24] 71
5.5 Top down approach for setting up the Work Breakdown Struc-

ture [24] . 72
5.6 Assigning task packages after the breakdown of the project in

a WBS [24] . 73
5.7 Correlation of task with organization [24] 73
5.8 A snapshot view of the freeware Gantt program TIMIOS [44] 74
5.9 Simple list with a hierarchical breakdown of activities and

schedule . 75
5.10 Sample for a Netplan with Activity-Node meshing [24] 76
5.11 Critical Path Diagram [50] . 76
5.12 The phases of a IT project official and alternative 78
5.13 Software Lifecycle Model [45] 79
5.14 Spiral model for complex IT projects 80

6.1 The ’Projektstrukturplan’ according to DIN 69000 86
6.2 Elements of Budget Planing and Cost Control 89
6.3 Bird’s view of the structures and processes supported by a

PM System . 90
6.4 Shared responsibility for Project Controlling [4] 91

7.1 PRINCE relationship with projects and business [31] 95
7.2 PRINCE2 Management disciplines [31] 95
7.3 PRINCE2 Project Management structure [31] 96
7.4 Customer/Supplier Project Management Organisation [31] . . 97
7.5 Programme Organisation [31] 97
7.6 Components of a Plan [31] . 98
7.7 PRINCE2 Plan Level [31] . 98
7.8 Breakdown of technical stages (A-H) wrt. management stages

(1 to 4) . 100
7.9 Duties of Managers for Risk Management [31] 101
7.10 Risk flow and key points for management intervention [31] . . 102
7.11 PRINCE2 path to Quality [31] 103
7.12 PRINCE2 processes structure [31] 105
7.13 Sub-processes for the PRINCE2 main processes [31] 105

LIST OF FIGURES 235

7.14 Starting Up Processes and Subprocesses [31] 106
7.15 Initiating a Project [31] . 107
7.16 Directing a Project [31] . 107
7.17 Controlling a Stage [31] . 109
7.18 Managing Product Delivery [31] 109
7.19 Managing Stage Boundaries [31] 110
7.20 Closing A Project [31] . 111

8.1 Project Management Knowledge Realms [21] 114
8.2 PMBoK Process Groups and PM Disciplines [21] 115
8.3 The Deming Cycle’s road to quality 116
8.4 Project and PMBoK Process Groups and PM Disciplines [21] 116
8.5 PMBoK’s Process Diagram 117
8.6 PMBoK’s Process Groups and their interrelationships → . . . 118
8.7 Project Management Groups and process shaping 119
8.8 Processes in the Project Group Execution [21] 120
8.9 Elements of the Process Group Control+Steering [21] 121
8.10 Relationship between Product and Project 124
8.11 Time line of a project progress report in terms of cost devel-

opment [21] . 127
8.12 Pareto chart of error/defect distribution per category/module

[21] . 129
8.13 Tools for the PM to support Team management 130

9.1 The Scrum development cycle [37] 141
9.2 The Sprint process [9] . 143
9.3 The Sprint Task Board [8] . 145
9.4 Sprint Burndown diagram [16] 146

10.1 Fishbone diagram to asses IT SW development problems . . . 150
10.2 Setting up a FMEA analysis 151

11.1 The main stages in the software life cycle [35] 155
11.2 The four columns of the SW production chain 156
11.3 The Waterfall Model of the Software Live Cycle [6] 157
11.4 Use Case how to evaluate a written exam 158
11.5 Interaction of the different PM levels according to the V-

Model [35] . 160
11.6 The V-Model . 161
11.7 Incremental system development according to the V-Model

XT (on the vendor side) [3] 162
11.8 Phase changes of a product or sub-product 163
11.9 Adoption of the V-Model XT for the ITS [25] 163
11.10Spiral Model according the Boehm [6] 164
11.11The four GQM phases [5] . 165

236 LIST OF FIGURES

11.12Schematic lay-out of a GQM plan [12] 166
11.13Development of OO modelling frameworks [52] 167
11.14Intensity of the different RUP disciplines over the phases [39] 168
11.15SW development requirements laid out by UCD 170
11.16Code enhancement for the Windows NT product family . . . 172
11.17CASE modelling with Together [3] 173

12.1 Conflicting attributes in software development 178
12.2 Simplified sequence of SW development and test phases . . . 179
12.3 SW development according to PMBoK 180
12.4 SW development according to the Scrum model 181
12.5 SW quality criterion’s according to Barry Boehm 181
12.6 Rôle of FR and NFR in the development chain and attached

quality standards . 181
12.7 Set-up of a Quality Management System according to ISO

9000-3 [45] . 183
12.8 Quality Management for software development a) iterative

process improvements regarding quality b) constant improve-
ments for developments by means of testing [45] 184

12.9 Hierarchy of a Quality Management System according to ISO
10013 [35] . 184

12.10Definition of internal, external und quality in use according
to ISO/IEC 9126-1 . 185

12.11Internal and external criterion’s according to ISO/IEC 9126-1 186
12.12Quality in Use criterion’s – ISO/IEC 9126-1 186
12.13SW quality process chain – ISO/IEC 9126-1 186
12.14Quality criterion’s of the components – ISO/IEC 9126-1 . . . 187
12.15Quality criterion’s according to SQuaRE 188
12.16State chart for defects . 190
12.17Defect distribution in terms of components and priorities . . . 191
12.18Average code completion as scheduled (dashed), as realised

(solid) . 193
12.19QMP chart with an estimate of acceptable defects for the

scheduled release . 193
12.20Estimation of unidentified defects for the final release 194

13.1 Procedure of Continuous Integration 200
13.2 Process chain of Continuous Integration 202
13.3 Branching into different releases in the VCS [20] 203
13.4 Including a changed module into a specific branch 204
13.5 Use case for using Mockups instead of the real code 206

14.1 Release Management as key discipline for customer satisfaction208
14.2 ITIL Service Support Management Functions (SMF) 208

LIST OF FIGURES 237

14.3 Dependencies of the Release Management with other manage-
ment disciplines . 209

14.4 Release Management steps from design to final release 211
14.5 Patch Management Cycle [13] 215
14.6 Quality Assurance from the idea to the release 216
14.7 Defect appearance and fixing during the development and test

cycle . 217
14.8 Building Release Candidates 218

15.1 ’Project devil’s two-sided fork’ 221
15.2 The principal ingredients of IT Project Management; iQ: in-

ternal Quality, eQ: external Quality, QiU: Quality in Use,
NFR: None-functional Requirements, QMP: Quality Manage-
ment Plan, QA: Quality Assurance 222

238 LIST OF FIGURES

List of Tables

8.1 PMBoK cost calculation approaches 135

11.1 UML Chart types [28] . 158
11.3 Metrics for some UNIX Mail Transfer Agent 171
11.2 Template for an Activity Table of a Use Case 176

12.1 Bouquet of quality criterion’s according to DIN 66272 182
12.2 Elements of a QMS document 195
12.3 Quality categories and their impact 196
12.4 State of a defect according to Bugzilla [7] 196
12.5 State of a defect fixing according to Bugzilla [7] 197

14.1 Releases Sources and Initiators [13] 213

15.1 The four phases of project management and SW development 220

16.1 Project’s Mission Statement 223
16.2 Project’s Business Statement 224
16.3 Resource Estimation . 224

17.1 PM Glossary [41] . 231

239

240 LIST OF TABLES

Bibliography

[1] 12MANAGE. http://www.12manage.com/.

[2] Scrum Alliance. Scrum alliance. http://www.scrumalliance.org.

[3] Ch. Bartelt, Th. Ternité, and M. Zieger. Modellbasierte entwicklung
mit dem v-modell xt. http://www.sigs-datacom.de/fileadmin/
user_upload/zeitschriften/os/2005/05/bartelt_ternite_OS_05_
05.pdf, 2005.

[4] K.J. Bechler and D. Lange. DIN Normen im Projektmanagement. Beuth
Verlag, 2004. DIN-Taschenbuch 226: Qualitätsmanagement-Verfahren.

[5] Y. Bernard. Seminar erfahrungen und experiment im software engineer-
ing. 2005.

[6] B.W. Boehm. A spiral model of software development and enhance-
ment. http://csse.usc.edu/csse/TECHRPTS/1988/usccse88-500/
usccse88-500.pdf.

[7] Bugzilla. Bugzilla. http://www.bugzilla.org/.

[8] M. Cohn. Task board. http://www.mountaingoatsoftware.com/
scrum/task-boards.

[9] William C.W. Scrum process mechanics. http://xp123.com/
articles/scrum-development-on-a-page/.

[10] G. Diethelm. Projektmanagement, Band 1: Grundlagen. Verlag Neue
Wirtschaftsbriefe Herne/Berlin, 2000.

[11] G. Diethelm. Projektmanagement, Band 2: Sonderfragen. Verlag Neue
Wirtschaftsbriefe Herne/Berlin, 2001.

[12] Ch. Differding. Ein objektmodell zur unterstützung des gqm-
paradigmas. 1993.

[13] M. Drapeau and S. Oudi. Release management: Where to
start? http://www.itsmwatch.com/itil/article.php/3680776/
Release-Management-Where-to-Start.htm, May 31, 2007.

241

http://www.12manage.com/
http://www.scrumalliance.org
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2005/05/bartelt_ternite_OS_05_05.pdf
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2005/05/bartelt_ternite_OS_05_05.pdf
http://www.sigs-datacom.de/fileadmin/user_upload/zeitschriften/os/2005/05/bartelt_ternite_OS_05_05.pdf
http://csse.usc.edu/csse/TECHRPTS/1988/usccse88-500/usccse88-500.pdf
http://csse.usc.edu/csse/TECHRPTS/1988/usccse88-500/usccse88-500.pdf
http://www.bugzilla.org/
http://www.mountaingoatsoftware.com/scrum/task-boards
http://www.mountaingoatsoftware.com/scrum/task-boards
http://xp123.com/articles/scrum-development-on-a-page/
http://xp123.com/articles/scrum-development-on-a-page/
http://www.itsmwatch.com/itil/article.php/3680776/Release-Management-Where-to-Start.htm
http://www.itsmwatch.com/itil/article.php/3680776/Release-Management-Where-to-Start.htm

242 BIBLIOGRAPHY

[14] Tufte E. Powerpoint does rocket science–and better tech-
niques for technical reports. http://www.edwardtufte.com/bboard/
q-and-a-fetch-msg?msg_id=0001yB.

[15] eGroupware. egroupware. http://www.egroupware.org/.

[16] EPF. Artifact: Sprint burndown chart. http://epf.eclipse.
org/wikis/scrum/Scrum/workproducts/sprint_burndown_chart_
F647C347.html.

[17] Kent et al. http://agilemanifesto.org/.

[18] Standish Group. Chaos 2004 survey results. http://www.infoq.com/
articles/Interview-Johnson-Standish-CHAOS.

[19] IBM. Ibm lotus notes. http://www-01.ibm.com/software/de/lotus/.

[20] Neuma Technology Inc. Taking the complexity out of release manage-
ment. http://www.neuma.com/Neuma/ReleaseManagement.pdf.

[21] Project Management Institute. A Guide to the Project Management
Body of Knowledge. CCTA, 1999.

[22] Software Engineering Institute. http://www.sei.cmu.edu/.

[23] B.W. Karnighan and D.M. Ritchie. The C programming language.
Prentice-Hall, Eaglewood Cliffs NJ, 1978.

[24] H.-D. Litke. Projektmanagement. Carl Hanser Verlag, München, 5.
erweiterte auflage edition, 2007.

[25] BASE Consulting LLC, Knowledge Systems Design (KSD), and Siemens
ITS. System engineering guidebook for its, version 2.0. http://www.
fhwa.dot.gov/cadiv/segb/files/segbversion2.pdf, 2007.

[26] R.L. Martino. Project management and control, vol. 1, finding the
critical path, new york. 1964.

[27] Microsoft. Microsoft - sharepoint 2010. http://sharepoint.
microsoft.com/en-us/Pages/default.aspx.

[28] B. Oesterreich. Objektorientierte Software Entwicklung. Oldenbourg
Verlag, München Wien, 1998.

[29] Office of Government Commerce. Itil v3. http://www.ogc.gov.uk/
guidance_itil.asp.

[30] Office of Government Commerce. Prince2. http://www.ogc.gov.uk/
methods_prince_2.asp.

http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001yB
http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001yB
http://www.egroupware.org/
http://epf.eclipse.org/wikis/scrum/Scrum/workproducts/sprint_burndown_chart_F647C347.html
http://epf.eclipse.org/wikis/scrum/Scrum/workproducts/sprint_burndown_chart_F647C347.html
http://epf.eclipse.org/wikis/scrum/Scrum/workproducts/sprint_burndown_chart_F647C347.html
http://agilemanifesto.org/
http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS
http://www.infoq.com/articles/Interview-Johnson-Standish-CHAOS
http://www-01.ibm.com/software/de/lotus/
http://www.neuma.com/Neuma/ReleaseManagement.pdf
http://www.sei.cmu.edu/
http://www.fhwa.dot.gov/cadiv/segb/files/segbversion2.pdf
http://www.fhwa.dot.gov/cadiv/segb/files/segbversion2.pdf
http://sharepoint.microsoft.com/en-us/Pages/default.aspx
http://sharepoint.microsoft.com/en-us/Pages/default.aspx
http://www.ogc.gov.uk/guidance_itil.asp
http://www.ogc.gov.uk/guidance_itil.asp
http://www.ogc.gov.uk/methods_prince_2.asp
http://www.ogc.gov.uk/methods_prince_2.asp

BIBLIOGRAPHY 243

[31] Office of Government Commerce. Managing Successful Projects with
PRINCE2. Newton Square PA, 4th edition, 2004.

[32] Spiegel Online. Kölner u-bahn-bau-affäre. http://www.spiegel.de/
panorama/0,1518,681611,00.html.

[33] J. Phillips. IT Project Management. McCraw.Hill/Osborne,Emeryville
CA, 2nd edition, 2004.

[34] P. Reich. Die Massenpsychologie des Fashismus. Matrix Verlag, 2005.

[35] R. Retrash. Einführung in das Software-Qualitätsmanagement. Logos
Verlag, Berlin, 1998.

[36] Westdeutscher Rundfunk. Der kölner u-bahn-bau. http:
//www.wdr.de/themen/panorama/koeln/ubahn_stadtarchiv/ubahn/
uebersicht.jhtml.

[37] J. Scherer. Scrum-fibel. http://www.scrum-fibel.de/.

[38] A.T. Schreiner. Was ist eigentlich unix ? (the essence of unix). 1/1987.

[39] W.A. Scott. A manager’s introduction to rational unified process (rup).
http://www.ambysoft.com/unifiedprocess/rupIntroduction.html.

[40] Softonic. Easy timesheets. http://easy-timesheets.en.softonic.
com/.

[41] Alby T. Projektmanagement: Definitionen, einführungen und vorlagen.
http://projektmanagement-definitionen.de/glossar/.

[42] A. Thomas. Erfahrungsbericht – methoden in der anwendungsbetreu-
ung, September 29, 2004.

[43] Tigris. Tigris.org - open source software engineering tools. http://
tortoisesvn.tigirs.org.

[44] Timios. Gnatt designer. http://timios.net/Gantt/more.html.

[45] E. Wallmüller. Ganzheitlichen Qualitätsmanagmement in der Informa-
tionsverarbeitung. Hanser Verlag, 1995.

[46] Wieczorrek and Mertens. Management von IT-Projekten. Springer Ver-
lag Berlin Heidelberg, 2 edition, 2007.

[47] Wikipedia. Bugzilla. http://en.wikipedia.org/wiki/Bugzilla.

[48] Wikipedia. Capital expenditure. http://en.wikipedia.org/wiki/
Capital_expenditure.

http://www.spiegel.de/panorama/0,1518,681611,00.html
http://www.spiegel.de/panorama/0,1518,681611,00.html
http://www.wdr.de/themen/panorama/koeln/ubahn_stadtarchiv/ubahn/uebersicht.jhtml
http://www.wdr.de/themen/panorama/koeln/ubahn_stadtarchiv/ubahn/uebersicht.jhtml
http://www.wdr.de/themen/panorama/koeln/ubahn_stadtarchiv/ubahn/uebersicht.jhtml
http://www.scrum-fibel.de/
http://www.ambysoft.com/unifiedprocess/rupIntroduction.html
http://easy-timesheets.en.softonic.com/
http://easy-timesheets.en.softonic.com/
http://projektmanagement-definitionen.de/glossar/
http://tortoisesvn.tigirs.org
http://tortoisesvn.tigirs.org
http://timios.net/Gantt/more.html
http://en.wikipedia.org/wiki/Bugzilla
http://en.wikipedia.org/wiki/Capital_expenditure
http://en.wikipedia.org/wiki/Capital_expenditure

244 BIBLIOGRAPHY

[49] Wikipedia. Cheops. http://de.wikipedia.org/wiki/Cheops.

[50] Wikipedia. Critical path method. http://en.wikipedia.org/wiki/
Critical_path_analysis.

[51] Wikipedia. Function point. http://en.wikipedia.org/wiki/
Function_point.

[52] Wikipedia. Ibm rational unified process. http://en.wikipedia.org/
wiki/Rup.

[53] Wikipedia. Kölner dom. http://de.wikipedia.org/wiki/Koelner_
Dom. URL adjustment: ’ö’ was translated to ’oe’.

[54] Wikipedia. Operating expense. http://en.wikipedia.org/wiki/
Operating_expense.

[55] Wikipedia. Plain old documentation. http://en.wikipedia.org/
wiki/Plain_Old_Documentation.

[56] Wikipedia. Sarbanes–oxley act. http://en.wikipedia.org/wiki/
Sarbanes--Oxley_Act.

[57] Wikipedia. Scrum. http://de.wikipedia.org/wiki/Scrum.

[58] Wikipedia. Spice. http://en.wikipedia.org/wiki/SPICE.

http://de.wikipedia.org/wiki/Cheops
http://en.wikipedia.org/wiki/Critical_path_analysis
http://en.wikipedia.org/wiki/Critical_path_analysis
http://en.wikipedia.org/wiki/Function_point
http://en.wikipedia.org/wiki/Function_point
http://en.wikipedia.org/wiki/Rup
http://en.wikipedia.org/wiki/Rup
http://de.wikipedia.org/wiki/Koelner_Dom
http://de.wikipedia.org/wiki/Koelner_Dom
http://en.wikipedia.org/wiki/Operating_expense
http://en.wikipedia.org/wiki/Operating_expense
http://en.wikipedia.org/wiki/Plain_Old_Documentation
http://en.wikipedia.org/wiki/Plain_Old_Documentation
http://en.wikipedia.org/wiki/Sarbanes--Oxley_Act
http://en.wikipedia.org/wiki/Sarbanes--Oxley_Act
http://de.wikipedia.org/wiki/Scrum
http://en.wikipedia.org/wiki/SPICE

	I Introduction
	What is Project Management?
	Scope of the course
	Historical Projects
	Building the Cheops Pyramid
	Building the Cathedral of Cologne

	What is a Project?
	What is Management?
	Why Project Management?
	What are failed Projects?
	Project Commitments and De-commitments

	What is IT Project Management ?
	Tasks and responsibilities of a Project Manager
	What are Stakeholders ?
	Project phases
	Project versus Product

	Project Management: Compliance and Conformance
	Project Management Institute (PMI)
	PRINCE2
	ISO 10006 / DIN 69 90x
	SCRUM
	SEI
	ISO/IEC 12207
	ISO/IEC 15504 (Spice)

	II Pre-Conditions for Project Management
	External and Internal Pre-Conditions
	Business Plan
	Technical Evaluation and Market Analysis
	Return-On-Investment Calculations
	The Mission Statement

	Project Management in Conflict
	Balancing Budget, Deadline, and Quality
	Effectiveness versus Efficiency

	Project Conditions
	Existing Technical Framework
	Existing Project Organization
	PLs Competence's

	Project Initialization Summary

	III Team Management
	The Project Manager and his Team
	Setting Up Teams
	Organization of Project Management
	The Project Manager
	Leadership models
	Declaring PM methods
	Building a team
	Delegation
	Skills and People CMM levels

	Organizing Teams
	Project Office
	RACI Matrix
	Meetings
	Document Filing

	Running Teams
	Conflicts
	Workshops
	Mediation
	Coaching

	Controlling
	Confirmations
	Auditing
	Reporting to Management

	IV Project Planning and Scheduling
	Scope and Tools of Project Planning
	Start of a new Project – the Project Plan
	Identifying Project Dependencies and Tasks
	The Work Breakdown Approach
	Project Organization Structure
	Scheduling: Assigning Deadlines and Resources to Tasks
	Gantt Charts
	Lists
	Netplan Techniques
	Critical Path Analysis (CPA)

	IT Project's Phases
	Software Development Lifecycle Model
	Spiral Model

	Background, Exercises, Facts

	V Standards and Frameworks
	DIN Norm 69 000 for Project Management
	Scope of DIN 69 000
	Project Management according to DIN 69 901
	Operating a Project (DIN 69 905)
	Budgeting Projects and Controlling Costs
	Project Management Systems
	Netplan Techniques
	Project Controlling

	PRINCE2 – Projects in Controlled Environments
	Origin and Scope of PRINCE2
	The PRINCE2 Management Components
	Organisation
	Plans
	Controls
	Stages
	Management of Risk
	Quality in a Project Environment
	Configuration Management
	Change Control

	PRINCE2 Processes
	Process Model
	Starting up a Project (SU)
	Initiating a Project (IP)
	Directing a Project (DP)
	Controlling a Stage (CS)
	Managing Product Delivery (MP)
	Managing Stage Boundaries (SB)
	Closing a Project (CP)
	Planning (PL)

	PRINCE2 – 2009

	Project Management Body of Knowledge
	Project Management Knowledge Realms
	Project and Product Life Cycle
	Project Management Processes and Process Groups
	Initialisation
	Planning
	Project Execution
	Control+Steering
	Termination

	Project Management Disciplines: The know-how Groups
	Integration Management
	Scope Management
	Time Management
	Cost Management
	Quality Management
	Human Resource Management
	Communication Management
	Risk Management
	Procurement Management

	Agility in Project Management
	Extreme Programming
	Feature Driven Development
	Dynamic Systems Development Method
	The Agile Manifesto
	Scrum
	Scrum Rôles
	Product Backlog
	Scrum Artefacts
	Scrum versus legacy Project Management

	The Sprint Process
	Sprint Planning
	The Sprint Backlog
	Daily Scrum
	Product Increment
	Sprint Review
	Measuring the Sprint Progress
	Sprint Retrospective

	Process Control with Six Sigma
	Fishbone Diagrams
	FMEA

	VI IT Product Development Management
	Software Development and Life Cycle Models
	The SW Production Chain
	The Waterfall Model
	Use-Cases and Test-Cases
	The V-Model
	The V-Model XT
	The Spiral Model
	GQM
	The RUP Model
	User Centered Design: UCD
	Usability Requirements for the User Centered Design
	Realizing User Centered Design

	Software Metrics
	Software Modelling and CASE Tools

	Software Quality and Defect Management
	The Software test cycle
	PMBoK: Software development, tests, and integration
	Scrum: Software development, tests, and Integration

	Quality Standards and Requirements
	FURPS Criterion's

	SW Quality Management according to ISO 9000
	Quality standards according to ISO/IEC 9126
	Quality as a Process chain – ISO/IEC 9126-1

	Software product Quality Requirements and Evaluation – SQuaRE
	Defect Management
	Attributes of a Defect
	Defect Lifecycle

	QA reports
	Estimating remaining Defects

	Continuous Integration
	Why (Continuous) Integration ?
	Development and testing Environments
	Infrastructure for the Continuous Integration

	Requirements for the Team applying Continuous Integration
	The Build Process
	Building for Continuous Integration
	Fixing errors within Continuous Integration

	Continuous Delivery

	Release and Roll-out Management
	Release Management à la ITIL
	Release Management Overview
	Release Planning
	Code and Patch Management
	Quality Assurance
	Release Readiness
	The Roll-Out Process

	Summary
	The Project Management Timeline
	Linking Project Management with SW Product Development
	Open Issues

	Project Artifacts
	Project Initiating Statements

	PMBok English/German Glossary

