summaryrefslogtreecommitdiff
path: root/src/sha256.c
blob: e5ba5ddebce3ef4eddf28d893f24fb9767965dcb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/*
 * SHA256
 *
 * The author (Brad Conte) has released this file "into the public domain free
 * of any restrictions".  This file is unchanged except for some style
 * clean-up and argument order for sha256_hash (feh).
 */

#include <stdint.h>
#include <string.h>
#include "sha256.h"

// DBL_INT_ADD treats two unsigned ints a and b as one 64-bit integer and adds c to it

#define DBL_INT_ADD(a,b,c) if (a > 0xffffffff - (c)) ++b; a += c;
#define ROTLEFT(a,b) (((a) << (b)) | ((a) >> (32-(b))))
#define ROTRIGHT(a,b) (((a) >> (b)) | ((a) << (32-(b))))

#define CH(x,y,z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x,2) ^ ROTRIGHT(x,13) ^ ROTRIGHT(x,22))
#define EP1(x) (ROTRIGHT(x,6) ^ ROTRIGHT(x,11) ^ ROTRIGHT(x,25))
#define SIG0(x) (ROTRIGHT(x,7) ^ ROTRIGHT(x,18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x,17) ^ ROTRIGHT(x,19) ^ ((x) >> 10))

uint32_t k[64] =
{
   0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1,
   0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
   0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786,
   0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
   0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147,
   0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
   0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
   0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
   0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a,
   0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
   0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

static void sha256_transform(sha256_ctx *ctx, uint8_t *data)
{  
  uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
      
  for (i = 0, j = 0; i < 16; ++i, j += 4)
    m[i] = (data[j] << 24) | (data[j+1] << 16) | (data[j+2] << 8) | (data[j+3]);
  for (; i < 64; ++i)
    m[i] = SIG1(m[i-2]) + m[i-7] + SIG0(m[i-15]) + m[i-16];

  a = ctx->state[0];
  b = ctx->state[1];
  c = ctx->state[2];
  d = ctx->state[3];
  e = ctx->state[4];
  f = ctx->state[5];
  g = ctx->state[6];
  h = ctx->state[7];
   
  for (i = 0; i < 64; ++i) {
    t1 = h + EP1(e) + CH(e,f,g) + k[i] + m[i];
    t2 = EP0(a) + MAJ(a,b,c);
    h = g;
    g = f;
    f = e;
    e = d + t1;
    d = c;
    c = b;
    b = a;
    a = t1 + t2;
  }
   
  ctx->state[0] += a;
  ctx->state[1] += b;
  ctx->state[2] += c;
  ctx->state[3] += d;
  ctx->state[4] += e;
  ctx->state[5] += f;
  ctx->state[6] += g;
  ctx->state[7] += h;
}

static void sha256_init(sha256_ctx *ctx)
{  
  ctx->datalen = 0; 
  ctx->bitlen[0] = 0; 
  ctx->bitlen[1] = 0; 
  ctx->state[0] = 0x6a09e667;
  ctx->state[1] = 0xbb67ae85;
  ctx->state[2] = 0x3c6ef372;
  ctx->state[3] = 0xa54ff53a;
  ctx->state[4] = 0x510e527f;
  ctx->state[5] = 0x9b05688c;
  ctx->state[6] = 0x1f83d9ab;
  ctx->state[7] = 0x5be0cd19;
}

static void sha256_update(sha256_ctx *ctx, uint8_t *data, uint32_t len)
{  
  uint32_t i;
   
  for (i=0; i < len; ++i) { 
    ctx->data[ctx->datalen] = data[i]; 
    ctx->datalen++; 
    if (ctx->datalen == 64) { 
      sha256_transform(ctx,ctx->data);
      DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],512); 
      ctx->datalen = 0; 
    }  
  }  
}  

static void sha256_final(uint8_t *hash,sha256_ctx *ctx)
{  
  uint32_t i; 
   
  i = ctx->datalen; 
   
// Pad whatever data is left in the buffer. 

  if (ctx->datalen < 56) { 
    ctx->data[i++] = 0x80; 
    while (i < 56) 
      ctx->data[i++] = 0x00; 
  }
  else { 
    ctx->data[i++] = 0x80; 
    while (i < 64) 
      ctx->data[i++] = 0x00; 
    sha256_transform(ctx,ctx->data);
    memset(ctx->data,0,56); 
  }  
   
// Append to the padding the total message's length in bits and transform. 

  DBL_INT_ADD(ctx->bitlen[0],ctx->bitlen[1],ctx->datalen * 8);
  ctx->data[63] = ctx->bitlen[0]; 
  ctx->data[62] = ctx->bitlen[0] >> 8; 
  ctx->data[61] = ctx->bitlen[0] >> 16; 
  ctx->data[60] = ctx->bitlen[0] >> 24; 
  ctx->data[59] = ctx->bitlen[1]; 
  ctx->data[58] = ctx->bitlen[1] >> 8; 
  ctx->data[57] = ctx->bitlen[1] >> 16;  
  ctx->data[56] = ctx->bitlen[1] >> 24; 
  sha256_transform(ctx,ctx->data);
  
// Since this implementation uses little endian byte ordering and SHA uses
// big endian, reverse all the bytes when copying the final state to the output hash. 

  for (i = 0; i < 4; ++i) { 
    hash[i]    = (ctx->state[0] >> (24-i*8)) & 0x000000ff; 
    hash[i+4]  = (ctx->state[1] >> (24-i*8)) & 0x000000ff; 
    hash[i+8]  = (ctx->state[2] >> (24-i*8)) & 0x000000ff;
    hash[i+12] = (ctx->state[3] >> (24-i*8)) & 0x000000ff;
    hash[i+16] = (ctx->state[4] >> (24-i*8)) & 0x000000ff;
    hash[i+20] = (ctx->state[5] >> (24-i*8)) & 0x000000ff;
    hash[i+24] = (ctx->state[6] >> (24-i*8)) & 0x000000ff;
    hash[i+28] = (ctx->state[7] >> (24-i*8)) & 0x000000ff;
  }
}

extern void sha256_hash(char *hash,const char *data,size_t len)
{
  sha256_ctx ctx;
  sha256_init(&ctx);
  sha256_update(&ctx,(uint8_t *)data,(int)len);
  sha256_final((uint8_t *)hash,&ctx);
}